K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

A=3+3 mũ 3+ 3 mũ 5+...+3  mũ 2015

Vì 3 không chia hết cho 9 => A không chia hết cho 9(điều phải chứng minh)

4 tháng 12 2016

1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)

\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)

\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)

\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)

6 tháng 12 2020

\(S=3^1+3^3+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)

\(=28+3^3.90+3^7.90+...+3^{2011}.90\)ko chia hết cho 9

31 tháng 1 2016

Vì a chia hết cho 3 => a2 chia hết cho 9

Vì b chia hết cho 3 => b2 chia hết cho 9

Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9

=> a2 + ab + b2 chia hết cho 9

 

30 tháng 4 2018

Câu a) Dễ mà

Câu b) Hiệu hai số nguyên tố k thể là 2013. Vì

Giả sử có hai số nguyên tố \(a-b=2013\)

Suy ra: a,b là số lẻ (Không đc vì a-b phải là số chẵn)

Hoặc: \(\orbr{\begin{cases}a=2\\b=2\end{cases}\Rightarrow\orbr{\begin{cases}b=2015\\a=2015\end{cases}}}\)(không thỏa vì 2015 không phải là số nguyên tố)

Suy ra phản giả thiết

Vậy không tồn tại hai số nguyên tố sao cho tổng = 2013

30 tháng 4 2018

a) Ta xét:S=3+3^(2+1)+3^(2+3)+...+3^(2+1009)+3^(2+1011)+3^(2+1013)

S=3+9(3+3^3+...+3^1009+3^1011+3^1013) ko chia hết cho 9

s ko chia het 70 minh ko bit

b) gọi 2 số nguyên tố là a,b  Giả sử:a-b=2013

vì 2013 là số lẻ => 1 trong 2 số a,b là chẵn mà a,b nguyên  tố => 1 trong 2 số a,b =2

Nếu a=2=>2-b=2013=>b=-2011ko là số nguyên tố

Nếu b=2 => a-2=2013 => a= 2015 ko số nguyên tô

Do vậy giả sử sai=> hiệu 2 số nguyên tố ko bằng 2013

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

17 tháng 10 2017

a/ \(10^5+8=\left(100....0\right)+8=\left(100...8\right)⋮9\) \(\left(đpcm\right)\) (tổng các c/s chia hết cho 9)

b/ \(10^{2015}+2\left(100.....0\right)+2=\left(100....2\right)⋮3\left(đpcm\right)\) (tổng các c/c chia hết cho 3)

c/ \(10^n+11=\left(100...0\right)+11=\left(100.....011\right)⋮3\) (tổng các c/s chia hết cho 3)

d/ \(10^n+17=\left(100.....0\right)+17=\left(100...017\right)⋮3;9\) (tổng các c/s chia hết cho 3,9)

e/ \(10^n-1=\left(100....0\right)-1=\left(999.....99\right)⋮3;9\)

17 tháng 10 2017

Làm thế khó nhìn. Em làm vầy dễ thấy hơn nè.

a/ \(10^5+8=\left(100000-1\right)+\left(8+1\right)=99999+9⋮9\)

b/ \(10^{2015}+2=\left(10...0-1\right)+\left(2+1\right)=\left(99...9\right)+3⋮3\)

c/ \(10^n+11=\left(100...0-1\right)+\left(11+1\right)=99...9+12⋮3\)

d/ \(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮3\)

\(10^n+17=\left(100...0-1\right)+\left(17+1\right)=99...9+18⋮9\)

Thế này dễ nhìn hơn e.