K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

A)0.(26)>0.216

B)0.(ab),0.a(ba) = 0.(abab)

21 tháng 10 2018

0,(26)<0,216

23 tháng 3 2018

Ngu người 

24 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

28 tháng 11 2018

0,01(A1 A2)<0,(A1 A2)<0,(A1 A2 A1 A2)

28 tháng 11 2018

Bạn giải bằng lời được không ? haha

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

b)

- Ở hình 2a là đồ thị của 3 hàm số \(y = 0,5x + 2;y = x + 2;y = 2x + 2\).

Ta có: \({a_1} = 0,5;{a_2} = 1;{a_3} = 2\) nên \({a_1} < {a_2} < {a_3}\).

Ta có: \({\alpha _1} < {\alpha _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).

\({\alpha _2} < {\alpha _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).

Do đó, \({\alpha _1} < {\alpha _2} < {\alpha _3}\).

- Ở hình 2b là đồ thị của 3 hàm số \(y =  - 2x + 2;y =  - x + 2;y =  - 0,5x + 2\).

Ta có: \({a_1} =  - 2;{a_2} =  - 1;{a_3} =  - 0,5\) nên \({a_1} < {a_2} < {a_3}\).

Ta có: \({\beta _1} < {\beta _2}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).

\({\beta _2} < {\beta _3}\) (góc ngoài của tam giác luôn lớn hơn góc trong không kề với nó).

Do đó, \({\beta _1} < {\beta _2} < {\beta _3}\).

27 tháng 7 2018

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

30 tháng 7 2018

chép mạng hả

17 tháng 10 2021

\(A=64^{11}\cdot16^{13}=2^{66}\cdot2^{52}=2^{118}\)

\(B=32^{17}\cdot8^{19}=2^{85}\cdot2^{57}=2^{142}\)

Do đó: A<B

14 tháng 1 2019

\(A=1+5+5^2+5^3+...+5^{2011}\)

\(5A=5+5^2+5^3+...+5^{2012}\)

=>\(5A-A=5^{2012}-1\Rightarrow A=\frac{5^{2012}-1}{4}\)

Phương trình ban đầu tương đương với: \(\frac{5^{2012}-1}{4}\left|x-1\right|=5^{2012}-1\)

\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)

9 tháng 11 2017

1+1=3

1234567