Cho a,m,n \(\in\)N* . Hãy so sánh A và B :
A = \(\frac{10}{a^m}+\frac{10}{a^n}\)
B = \(\frac{11}{a^m}+\frac{9}{a^n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
B,
(1 - x-1/2011)+(1 - x-2/2012)+(1 - x-3/2013)=(1 - x-4/2014)+(1 - x-5/2015)+(1 - x-6/2016)
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 = 2010-x/2014 + 2010-x/2015 + 2010-x/2016
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 - 2010-x/2014 - 2010-x/2015 - 2010-x/2016=0
=>(2010-x).(1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016)=0
Mà: 1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016 khác 0
=> 2010-x=0
=>x=2010
a, 10/a^m > 11/a^m; 10/a^n > 9/a^n => A > B
b, bạn cộng 1 vào các phân số đưa VP qua VT đặt nhân tử chung x + 2010 thì trong ngoặc còn lại là số dương nên x + 2010 = 0
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
Bạn vào câu hỏi tương tự nha !