Cho tam giác ABC , D là một điểm trên cạnh BC . Gọi E và F theo thứ tự là điểm đối xứng D qua AB và AC
a, Chứng minh rằng AE = AF
b , Tam giác ABC cần thêm điều gì để E và F đối xứng qua A
Vẽ hình và giải chi tiết giùm nha mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF(2)
Từ (1) và (2) suy ra AE=AF
b: Khi E đối xứng với F qua A thì A là trung điểm của EF
Xét ΔEDF có
DA là đườg trung tuyến
DA=EF/2
Do đó: ΔEDF vuông tại E
=>\(\widehat{BAC}=90^0\)
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
hay AE=AD(1) và BD=BE
Ta có: D và F đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DF
hay AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔAEB và ΔADB có
AE=AD(cmt)
AB chung
BE=BD(cmt)
Do đó: ΔAEB=ΔADB(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
CD=CF(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
Suy ra: AD=AE(1) và BD=BE
Ta có: F và D đối xứng nhau qua AC(gt)
nên AC là đường trung trực của FD
Suy ra: AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔABE và ΔABD có
AB chung
AE=AD(cmt)
BE=BD(cmt)
Do đó: ΔABE=ΔABD(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
DC=FC(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
Suy ra: AD=AE(1) và BD=BE
Ta có: F và D đối xứng nhau qua AC(gt)
nên AC là đường trung trực của FD
Suy ra: AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔABE và ΔABD có
AB chung
AE=AD(cmt)
BE=BD(cmt)
Do đó: ΔABE=ΔABD(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
DC=FC(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Gọi I,K lần lượt là giao điểm của AB với DE, AC với DF
a) E đối xứng D qua AB \(\Rightarrow\) IE = ID; góc I = 90 độ
Xét tam giác AED có AI là đường trung tuyến (IE = ID) còn là đường cao (góc I = 90 độ)
nên tam giác AED cân tại A \(\Rightarrow\) AE = AD (1)
F đối xứng D qua AC \(\Rightarrow\) KF = KD; góc K = 90 độ
Xét tam giác AFD có AK là đường trung tuyến (KF = KD) còn là đường cao (góc K = 90 độ)
nên tam giác AFD cân tại A \(\Rightarrow\) AF = AD (2)
Từ (1) và (2) \(\Rightarrow\) AE = AF
b) không biết làm