Phân tích đa thức thành nhân tử:
a) 164 + y4
b) y8 + 64
Giúp nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)
\(=0\cdot0\)
\(=0\)
d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)
\(=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)
\(=3x\left(x-2\right)\)
f) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
g) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(0,1\right)^3\)
\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
h) \(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)
\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)
\(=\left(5x-5y\right)\left(x+y\right)\)
\(=5\left(x+y\right)\left(x-y\right)\)
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(A=x^4+4\)
\(=\) \(x^4+4+4x^2-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(A=\) \(\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
a3 + b3 + c3 - 3abc = (a + b)3 + c3 - 3abc - 3ab(a + b)
= (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c)
= (a + b + c)(a2 + b2 + c2 - ab - ac - bc)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ac-3bc-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ac+2bc+2ab-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(A=x^2+4=\left(x^2+4x+4\right)-4x=\left(x+2\right)^2-\sqrt{4x}=\left(x+2-\sqrt{4x}\right)\left(x+2+\sqrt{4x}\right)\)
\(B=x^4+4y^4=\left(x^4+4x^2y^2+4y^4\right)-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
\(16^4+y^4=\left[\left(y^2\right)^2+2.y^2.16^2+\left(16^2\right)^2\right]-2.y^2.16^2=\left(y^2+16^2\right)^2-2.y^2.16^2\)
b tự tính tiếp nhé
ý b tương tự. ( gợi ý: thêm bớt hạng tử 16y^4 )
\(y^8+64\)
\(=\left(y^4\right)^2+2\cdot y^4\cdot8+8^2-2\cdot y^4\cdot8\)
\(=\left(y^4+8\right)^2-16y^4\)
\(=\left(y^4+8\right)^2-\left(4y^2\right)^2\)
\(=\left(y^4+8-4y^2\right)\left(y^4+8+4y^2\right)\)
a kudo shinichi làm rồi đó