cho a =4+3mu2 + 3mu3 +.....+3mu59.chứng minh rằng a chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:C=1+3+32+33+...+311
=(1+3+32)+(33+...+311)
=1.(1+3+32)+...+39.(1+3+32)
=1.13+...+39.13
=(1+...+39).13 chia hết cho 13
b.C=1+3+32+33+...+311
=(1+3+32+33)+(...+311)
=1.(1+3+32+33)+(...+311)
=1.(1+3+32+33)+...+38.(1+3+32+33)
=1.40+...+38.40
=(1+...+38).40 chia hết cho 40
Rút gọn đc
3^10 - 3 = 3(3^9 - 1) = 3.(19683-1) = 3.1514.13 chia hết cho 13
Ta có: \(3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)
\(=\left(3+3^4+3^7\right).13\)chia hết cho 13
A=3+32 +33+...+3100
3A=32+33+34+...+3101
3A-A=3101-3
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3100 + 3101
3A - A = 3101 - 3
2A = 3101 - 3
A = ( 3101 - 3 ) : 2
Bạn tự tính kết quả nhé.
Học tốt.
ta có A=3+3mu2+3mu3+..+3mu100
A=3+32+33+...+3100
3A=32+33+...+3100+3101
3A-A=32+33+...+3100+3101-(3+3mu2+3mu3+..+3mu100)
2A=3101-3
2A+3=3n
suy ra:3101-3+3=3n
suy ra:3101=3n
suy ra: n =3100
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
đề bạn có đúng k