CMR: 1/7^2-1/7^4+1/7^6-...+1/7^98-1/7^100 < 1/50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.
Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)
1/5^2 < 1/4.5 =1/4 -1/5
1/6^2 < 1/5.6 = 1/5-1/6
1/7^2 < 1/6.7 = 1/6-1/7
...
1/100^2 < 1/99.100 = 1/99 - 1/100
Vậy 1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/5+1/5-1/6+...+ 1/98-1/99 +1/99 -1/100
1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/100
1/5^2+1/6^2+1/7^2+...+1/100^2 < 24/100 < 50/100 = 1/2
Hay 1/5^2+1/6^2+1/7^2+...+1/100^2<1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}+\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)vào A. Ta được:
\(A.\frac{1}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)
\(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Ta có: \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\frac{49}{50}< \frac{1}{5}^{\left(đpcm\right)}\)