so sánh:
\(A=1^2 +3^2+...+19^2+21^2\)
\(B=2^2+4^2+6^2+...+18^2+20^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng nhận thấy :
\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)
Cộng theo vế ta được :
\(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)
Hay \(A>B\)
Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)
B có số số hạng là:(20-2):2+1=10(số số hạng)
Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)
\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)
\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)
\(\Rightarrow B-A< 0\Rightarrow B< A\)
Vậy B<A
\(A=2\sqrt{1}+2\sqrt{3}+...+2\sqrt{21}\)
\(A=2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)\)
\(B=2\sqrt{2}+2\sqrt{4}+....2\sqrt{22}\)
\(B=2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)
Có \(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\) Có 11 số hạng.
\(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\) Có 11 số hạng.
Mà \(\hept{\begin{cases}\sqrt{1}< \sqrt{2}\\....\\\sqrt{21}< \sqrt{22}\end{cases}}\)
=> \(2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)< 2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)
\(\Rightarrow A< B\)
Giả sử \(A< B\)\(\Leftrightarrow\)\(B-A>0\) ta có :
\(B-A=\left(1^2+3^2+5^2+...+19^2+21^2\right)-\left(2^2+4^2+6^2+...+18^2+20^2\right)\)
\(B-A=\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(19^2-18^2\right)+\left(21^2-20^2\right)+1\)
\(B-A=\left(3-2\right)\left(3+2\right)+...+\left(19-18\right)\left(19+18\right)+\left(21-20\right)\left(21+20\right)+1\)
\(B-A=2+3+4+5+18+19+20+21+1>0\)
Vậy điều giả sử đúng hay \(A< B\)
Chúc bạn học tốt ~
\(A=1^2+3^2+5^2+7^2+9^2+11^2+13^2+15^2+17^2+19^2+21^2.\)
\(B=0+2^2+4^2+6^2+8^2+10^2+12^2+14^2+16^2+18^2+20^2\)
Vì
\(21^2>20^2\)
\(19^2>18^2\)
\(.\)
\(.\)
\(.\)
\(3^2>2^2\)
\(1^2>0\)
\(\Rightarrow A>B\)