1) tìm giá trị lớn nhất của B=12-|x+4|
2) Tìm x biêt (x-1)x+2=(x-1)x+6
3) tính độ dài các cạnh một tam giác biết chu vi là 33cm và các cạnh của tam giác tỉ lệ voi 2;3;5 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Vì các cạnh x,y,z của 1 tam giác tỉ lệ với 2;4;5
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)
Vì tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất hơn độ dài cạnh còn lại là 20cm
=> (x+z)-y=20 (cm)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\left(cm\right)\)
Từ \(\frac{x}{2}=\frac{20}{3}=>x=\frac{40}{3}\)
Từ \(\frac{y}{4}=\frac{20}{3}=>y=\frac{80}{3}\)
Từ \(\frac{z}{5}=\frac{20}{3}=>z=\frac{100}{3}\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{44}{11}=4\)
Do đó: a=8; b=16; c=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)
Do đó: a=40/3; b=80/3; c=100/3
Bài 2: Gọi độ dài 3 cạnh của tam giác là a,b,c ( a,b,c>0)
chu vi của tam giác là 22 nên a+b+c = 22
vì a, b, c tỉ lệ với 2; 4; 5 nên a/2=b/4=c/5
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
suy ra a= 4; b = 8; c = 10
Bài 3: \(x:y:z=2:4:5\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)
suy ra x= 4, y=8, z=10
không biết làm thì hỏi từng bài một , hỏi nhiều 1 lúc dài lắm bạn
1)=>y/7=x/3
áp dụng tính chất của dãy tỉ số bằng nhau ta có
y/7=x/3=(x-y)/(3-7)=16/-4=-4
=>y=7*-4=-28
x=3*-4=-12
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)