tìm x {x^2-[5^2-(6^2-5x7)^3-4.]^3-13.2}^3=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2⁴.x - 3.5x = 5² - 2⁴
16x - 15x = 25 - 16
x = 9
2) 3².x + 2²x = 26.2² - 13
9x + 4x = 26.4 - 13
13x = 104 - 13
13x = 91
x = 91 : 13
x = 7
5) 6²x - 5²x = 11.2 - 11
36x - 25x = 22 - 11
11x = 11
x = 11 : 11
x = 1
3) 5²x - 2⁴x = 3⁴ - 16.3²
25x - 16x = 81 - 16.9
9x = -63
x = -63 : 9
x = -7
6) 7²x - 6²x = 13.2³ - 26
49x - 36x = 13.8 - 26
13x = 104 - 26
13x = 78
x = 78 : 13
x = 6
4) 7²x - 14x = 7².10 - 70
49x - 14x = 49.10 - 70
35x = 490 - 70
35x = 420
x = 420 : 35
x = 12
3/2 . x + ( 5/3 - 3/2) : 2/3 = 5/3
3/2.x + 1/6 : 2/3 = 5/3
3/2.x + 1/4 = 5/3
3/2.x = 5/3 - 1/4
3/2.x=17/12
x= 17/12 : 3/2
x= 17/18
Vậy...
Bài 2:
4/5x7 + 4/7x9 + 4/9x11 +...+4/17x19
= 2(2/5.7 + 2/7.9 + 2/9.11+...+ 2/17/19)
= 2( 1/5 - 1/7 + 1/7 -1/9 + 1/9 -1/11 +...+ 1/17 - 1/19)
= 2( 1/5- 1/19)
= 2 . 14/95
= 28/95
Trả lời:
Bài 1
\(\frac{3}{2}\times x+\left(\frac{5}{3}-\frac{3}{2}\right)\div\frac{2}{3}=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}\times x+\frac{1}{6}\div\frac{2}{3}=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}\times x+\frac{1}{6}\times\frac{3}{2}=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}\times x+\frac{1}{4}=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{6}\times x=\frac{17}{12}\)
\(\Leftrightarrow x=\frac{17}{2}\)
Vậy \(x=\frac{17}{2}\)
Ta có: 72x-62x = 13.23-26 => x(72-62) = 13.8-26 => 13x = 78 => x = 78:13 => x = 6 Vậy, x = 6.
a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)
b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)
c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)
e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)
a)
=\(2x-\dfrac{1}{2}=\dfrac{12}{9}\cdot\dfrac{3}{4}=1\)
=\(2x=1+\dfrac{1}{2}=1.5\)
=\(x=1.5:2=0.75\)
b)
=\(x^2=0+2=2\)
TH1:\(x=2\)
TH2:\(x=-2\)
Bài 1:
a: \(2x-\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{12}{9}\)
=>\(2x-\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{4}{3}\)
=>\(2x=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
=>x=2/2=1
b: \(x^2-2=0\)
=>\(x^2=2\)
=>\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Bài 2:
a: \(A=\dfrac{1,11+0,19-13\cdot2}{2,06+0,54}-\left(\dfrac{1}{2}+\dfrac{1}{4}\right):2\)
\(=\dfrac{1,3-26}{2,6}-\dfrac{3}{4}:2\)
\(=-9,5-\dfrac{3}{8}=-\dfrac{79}{8}\)
\(B=\left(5\dfrac{7}{8}-2\dfrac{1}{4}-0,5\right):\left(2\dfrac{23}{26}\right)\)
\(=\left(5+\dfrac{7}{8}-2-\dfrac{1}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}\)
\(=\left(3+\dfrac{1}{8}\right)\cdot\dfrac{26}{75}=\dfrac{25}{8}\cdot\dfrac{26}{75}=\dfrac{13}{12}\)
b: A<x<B
=>\(-\dfrac{79}{8}< x< \dfrac{13}{12}\)
mà \(x\in Z\)
nên \(x\in\left\{-9;-8;...;0;1\right\}\)
a) \(2+\dfrac{3}{4}\)
\(=\dfrac{8}{4}+\dfrac{3}{4}\)
\(=\dfrac{8+3}{4}\)
\(=\dfrac{11}{4}\)
b) \(\dfrac{1}{3}+\dfrac{3}{2}-\dfrac{7}{4}\)
\(=\dfrac{4}{12}+\dfrac{18}{12}-\dfrac{21}{12}\)
\(=\dfrac{4+18-21}{12}\)
\(=\dfrac{1}{12}\)
c) \(\dfrac{1}{6}+\dfrac{3}{8}-\dfrac{1}{4}\)
\(=\dfrac{4}{24}+\dfrac{9}{24}-\dfrac{6}{24}\)
\(=\dfrac{4+9-6}{24}\)
\(=\dfrac{7}{24}\)
d) \(\dfrac{5}{12}+\dfrac{3}{8}\times\dfrac{4}{9}\)
\(=\dfrac{5}{12}+\dfrac{3\times4}{8\times9}\)
\(=\dfrac{5}{12}+\dfrac{1}{6}\)
\(=\dfrac{5}{12}+\dfrac{2}{12}\)
\(=\dfrac{7}{12}\)
e) \(\dfrac{4}{5}-\dfrac{1}{5}\times\dfrac{7}{2}\)
\(=\dfrac{4}{5}-\dfrac{1\times7}{5\times2}\)
\(=\dfrac{4}{5}-\dfrac{7}{10}\)
\(=\dfrac{8}{10}-\dfrac{7}{10}\)
\(=\dfrac{8-7}{10}\)
\(=\dfrac{1}{10}\)
f) \(\dfrac{16}{9}-\dfrac{4}{15}:\dfrac{2}{5}\)
\(=\dfrac{16}{9}-\dfrac{4}{15}\times\dfrac{5}{2}\)
\(=\dfrac{16}{9}-\dfrac{4\times5}{15\times2}\)
\(=\dfrac{16}{9}-\dfrac{2}{3}\)
\(=\dfrac{16}{9}-\dfrac{6}{9}\)
\(=\dfrac{16-6}{9}\)
\(=\dfrac{10}{9}\)
a: =8/4+3/4=11/4
b: =4/12+18/12-21/12=1/12
c: =4/24+9/24-6/24=7/24
d: =5/12+12/72
=5/12+1/6
=5/12+2/12=7/12
e: =4/5-7/10
=8/10-7/10=1/10
f: =16/9-4/15*5/2
=16/9-20/30
=16/9-2/3
=16/9-6/9=10/9
\(\dfrac{7}{6}\) + \(\dfrac{5}{12}\) - \(\dfrac{1}{18}\) - 1
= \(\dfrac{42}{36}\) + \(\dfrac{15}{36}\) - \(\dfrac{2}{36}\) - \(\dfrac{36}{36}\)
= \(\dfrac{19}{36}\)
\(\dfrac{13}{6}\) + \(\dfrac{5}{18}+3-\dfrac{7}{12}\)
= \(\dfrac{78}{36}+\dfrac{10}{36}+\dfrac{108}{36}-\dfrac{21}{36}\)
= \(\dfrac{175}{36}\)
3 + \(\dfrac{11}{4}-\dfrac{1}{12}-\dfrac{3}{16}\)
= \(\dfrac{144}{48}+\dfrac{132}{48}-\dfrac{4}{48}-\dfrac{9}{48}\)
= \(\dfrac{263}{48}\)
\(\dfrac{2}{5}\) x \(\dfrac{7}{4}\) - \(\dfrac{2}{5}\) x \(\dfrac{3}{4}\)
= \(\dfrac{2}{5}\) x ( \(\dfrac{7}{4}\) - \(\dfrac{3}{4}\))
= \(\dfrac{2}{5}\) x \(\dfrac{4}{4}\)
= \(\dfrac{2}{5}\)