K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

tính a,b,c hả bạn

31 tháng 1 2023

\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)

\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)

\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)

\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)

\(\Rightarrow A=1\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(-A=\frac{a^2}{(a-b)(c-a)}+\frac{b^2}{(a-b)(b-c)}+\frac{c^2}{(c-a)(b-c)}\)

\(=\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}=\frac{a^2b+b^2c+c^2a-(ab^2+bc^2+ca^2)}{-[(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)]}=-1\)

$\Rightarrow A=1$

19 tháng 7 2016

a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\)

Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)

Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)

Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi 

31 tháng 12 2017

với ab+bc+ca=1 

=>\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

tương tự mấy cái kia rồi thay vào, ta có

A=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b),ta có \(a^2+2bc-1=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)

tương tự mấy cái kia, rồi thay váo, ta có 

\(B=\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=1\)

^_^

31 tháng 12 2017

Ta có:   MS = (1+a2).(1+b2).(1+c2)

= (ab + ac + bc + a2).(ab + ac + bc + b2).(ab + bc + ac + c2)

= [ (a2 + ac) + (ab + bc) ] . [ (ab + b2) + (ac + bc) ] . [ (ab + bc) + (ac + c2) ]

= [ a(a + c) + b(a + c) ] . [ b(a + b) + c(a + b) ] . [ b(a + c) + c(a + c) ]

= (a + b)(a + c)(b + c)(a + b)(b + c)(a + c)

= (a + b)2(b + c)2(a + c)2     =  TS

Vậy   A = 1