Cho a/b = c/d . Chứng minh :
4a^4 + 5b^4/4c^4 + 5d^4
Giúp tớ với , 1 giờ tớ phải đi học rồi.
Ai giải đầy đủ tớ tk cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
a, \(\Delta AMB\)và \(\Delta CMK\), ta có :
MB=MC ( vì M là chung điểm của BC)
Góc AMB = Góc CMK ( 2 góc đối đỉnh )
AM=MK
=> \(\Delta AMB=\Delta CMK\)( c.g.c)
=> AB=CK ( 2 cạnh tương ứng )
b, \(\Delta BMK\)và \(\Delta AMC\) ta có :
MB = MC
Góc BMK = Góc AMC ( 2 góc đối đỉnh )
AM = MK
=> \(\Delta BMK=\Delta AMC\)(c.g.c)
=> AC = BK ( 2 cạnh tương ứng )
c , Vì \(\Delta AMB=\Delta CMK\)
=> Góc BAM = góc MKC ( 2 góc tương ứng )
Mà góc BAM và góc MKC ở vị trí sole trong
=> AB//CK
d , Vì \(\Delta BMK=\Delta AMC\)
=> Góc BKM= góc MAC ( 2 góc tương ứng )
Mà góc BKM và Góc MAC ở vị trí sole trong
=> AC // BK
a. (-7) . (-13) + 8 . (-13) = (-7 + 8) . (-13) = 1 . (-13) = -13
b. (-5) . [-4 - (-14)] = (-5) . (-4) - (-5) . (-14) = (-5) . 10 = -50
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{4a}{4c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4a}{4c}=\frac{5b}{5c}=\frac{4a-5b}{4c-5d}\) (1)
\(\frac{4a}{4c}=\frac{5b}{5d}=\frac{4a+5b}{4c+5d}\) (2)
Từ (1) và (2) => \(\frac{4a-5b}{4c-5d}=\frac{4a+5b}{4c+5d}\)
\(\Rightarrow\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\)
\(\left(2a+3b\right)\left(4c-5d\right)=\left(4a-5b\right)\left(2c+3d\right)\)
\(\Leftrightarrow8ac-10ad+12bc-15bd=8ac+12ad-10bc-15bd\)
\(\Leftrightarrow-10ad+12bc=12ad-10bc\)
\(\Leftrightarrow\left(-10ad+12bc\right)+\left(-12bc-12ad\right)=\left(12ad-10bc\right)+\left(-12bc-12ad\right)\)
\(\Leftrightarrow22bc=22ad\)
Vì : a/b=c/d nên =>a/c=b/d
Đặt: a/c=b/d=k thì =>a=ck;b=dk
Thay :a=ck và b=dk vào 2a-3b/4a+5b có :
2a-3b/4a+5b=2ck-3dk/4ck+5dk=k(2c-3d)/k(4c+5d)=2c-3d/4c+5d
Tu đây suy ra : 2a-3b/4a+5b=2c-3d/4c+5d
****
\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a+b}{c+d}=a.d=b.c\)
\(=>\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
nha