so sánh (9/11 - 0.81)^2005 và 1/10^4010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{9}{11}-0,81\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}=0,00\left(81\right)^{2005}\)
\(\frac{1}{10^{4010}}=\frac{1}{100^{2005}}=\left(\frac{1}{100}\right)^{2005}=0,01^{2005}\)
Vì 0,00(81)<0,01 nên \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
So sánh A = (9/11 - 0,81)^2005 và B = 1/(10)^4010
ta được A =B =0
chúc bạn học tốt
ơi bạn hoang thi kim hãy giải thích kặn kẻ hơn được không, nếu mình thấy đúng sẽ cho một k
Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)
Mà \(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)
Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
N=5/10^2005+5/10^2006+610^2006
M=5/10^2005+6/10^2005+5/10^2006
Có : 200410 + 20049 = 20049 ( 2004 + 1 ) = 20049 . 2005
Lại có : 200510 = 20059 . 2005
Vì 20049 < 2009
=> 200410 + 20049 < 200510
2004^10+2004^9= 2004^9(2004+1)=2004^9.2005
2005^10=2005^9.2005
từ đó ta có 2004^10+2004^9 < 2005^10