K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

\(S=1+2+2^2+2^3+...+2^{2015}\)

\(=\left(1+2+2^2+2^3\right)+...+\left(2^{2012}+2^{2013}+2^{2014}+2^{2015}\right)\)

\(=\left(1+2+2^2+2^3\right)+...+2^{2012}\left(1+2+2^2+2^3\right)\)

\(=1.15+...+2^{2012}.15=15\left(1+...+2^{2012}\right)⋮15^{\left(đpcm\right)}\)

25 tháng 10 2022

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

19 tháng 11 2021
2×6²-48:2³
2 tháng 12 2021

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)

22 tháng 12 2021

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

2 tháng 1 2022

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

23 tháng 12 2015

S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)

S=   3+45+51+51

S=3+3.15+3.17+3.17

S=3.(1+15+17.2): hết 3

tick nha nhanh nhất nè

27 tháng 8 2023

\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)

\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)

\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)

\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)

\(\Rightarrow dpcm\)

6 tháng 10 2023

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(S=3+2^2\cdot3+...+2^{58}\cdot3\)

\(S=3\cdot\left(1+2^2+...+2^{58}\right)\)

S chia hết cho 3

_____

\(S=1+2+2^2+...+2^{59}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)

\(S=7+7\cdot2^3+...+7\cdot2^{57}\)

\(S=7\cdot\left(1+2^3+...+2^{57}\right)\)

S chia hết cho 7 

_____

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{56}+2^{57}+2^{58}+2^{59}\right)\)

\(S=15+2^4\cdot15+...+2^{56}\cdot15\)

\(S=15\cdot\left(1+2^4+...+2^{56}\right)\)

S chia hết cho 15 

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3