K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Với a, b, c là các số dương.

Ta có: \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}=2\)

\(\Rightarrow\) \(\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{c+a+1}\right) \)

\(=\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}\)

\(\ge2\sqrt{\dfrac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}>0\) (Bất đẳng thức Cô-si)

Tương tự: \(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(c+a\right)\left(a+b\right)}{\left(c+a+1\right)\left(a+b+1\right)}}>0\)

\(\dfrac{1}{c+a+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}>0\)

Nhân vế theo vế ba bất đẳng thức trên, ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\) \(\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Rightarrow\) \(1\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

Vậy giá trị lớn nhất của tích \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) bằng \(\dfrac{1}{8}\) khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

3 tháng 10 2023

 Đặt \(a+b=x,b+c=y,c+a=z\) với \(x,y,z>0\). Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=2\)

 \(\Rightarrow\dfrac{1}{x+1}=2-\dfrac{1}{y+1}-\dfrac{1}{z+1}\) \(=1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\) \(=\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

 \(\Rightarrow\dfrac{1}{x+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}\)

 Tương tự, ta có: \(\dfrac{1}{y+1}\ge2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}\) và \(\dfrac{1}{z+1}\ge2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

 Nhân theo vế 3 BĐT vừa tìm được, ta có:

  \(\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}\ge2\sqrt{\dfrac{y}{y+1}.\dfrac{z}{z+1}}.2\sqrt{\dfrac{z}{z+1}.\dfrac{x}{x+1}}.2\sqrt{\dfrac{x}{x+1}.\dfrac{y}{y+1}}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8.\dfrac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\dfrac{1}{8}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{4}\)

Vậy GTLN của \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là \(\dfrac{1}{8}\), xảy ra khi \(a=b=c=\dfrac{1}{4}\)

9 tháng 11 2021

\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)

9 tháng 11 2021

Câu 23:

https://olm.vn/hoi-dap/detail/1732532846797.html

17 tháng 12 2023

Ta có \(\dfrac{1}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{1}{b^3c^3}\left(b+c\right)}=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}\)

Tương tự \(\Rightarrow VT=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{c^2a^2}{\dfrac{1}{c}+\dfrac{1}{a}}+\dfrac{a^2b^2}{\dfrac{1}{a}+\dfrac{1}{b}}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\) (BĐT B.C.S)

\(=\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{ab+bc+ca}{abc}\right)}\)

\(=\dfrac{ab+bc+ca}{2}\) (do \(abc=1\))

\(\ge\dfrac{3\sqrt[3]{abbcca}}{2}\)

\(=\dfrac{3\left(\sqrt[3]{abc}\right)^2}{2}=\dfrac{3}{2}\) (do \(abc=1\))

ĐTXR \(\Leftrightarrow a=b=c=1\)

5 tháng 5 2022

Áp dụng bđt Svácxơ, ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Áp dụng, thay vào A, ta có: 

\(A\le\text{Σ}\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)

Dấu "="⇔\(a=b=c=1\)

5 tháng 5 2022

= chịu

12 tháng 1 2022

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

NV
14 tháng 1 2022

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)