tìm x :
( x - 2 )2 = ( x - 2 )4
nhanh nha mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9}{2}+\left(x-\dfrac{3}{4}\right)=\dfrac{25}{4}\\x-\dfrac{3}{4}=\dfrac{25}{4}-\dfrac{9}{2}\\ x-\dfrac{3}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}+\dfrac{3}{4}\\ x=\dfrac{5}{2} \)
2 (x-1) - 5 (x+2) = -10
2x-2 - 5x+10 = -10
2x-5x-2+10=-10
2x-5x=-10-10+2
-3x=-18
x=6
1/2x + 1/5 = 2/3x - 1/4
=> 1/2x - 2/3x = -1/4 - 1/5
=> -1/6x = -9/20
=> x = -9/20 : (-1/6)
=> x = 27/10
\(\frac{1}{2}x+\frac{1}{5}=\frac{2}{3}x-\frac{1}{4}\)
\(\frac{1}{2}x=\frac{2}{3}x-\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{2}x=-\frac{9}{20}+\frac{2x}{3}\)
\(\frac{1}{2}x=-\frac{9}{20}+\frac{2x}{3}-\frac{2x}{3}\)
\(-\frac{x}{6}=-\frac{9}{20}\)
\(6\left(-\frac{x}{6}\right)=6\left(-\frac{9}{20}\right)\)
\(-x=-\frac{27}{10}\)
\(\Rightarrow x=-\frac{27}{10}\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(a,\left(2^x-3\right)^3-59=5\)
\(\Leftrightarrow\left(2^x-3\right)^3=64=4^3\)
\(\Leftrightarrow2^x-3=4\)
\(\Leftrightarrow2^x=7\)
a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)
A= /x+2/+/x-3/
=/x+2/+/3-x/
Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/
=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A
Vậy GTNN của A là 5 x=-2 hoặc x=3
b)GTNN của B là 9
a) Ta có: /x - 3/ = /3 - x/
=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/
Mà /x + 2 + 3 - x/ = /5/ = 5
=>A lớn hơn hoặc bằng 5
Đẳng thức xảy ra khi: (x + 2)(3 - x)=0
=>x = -2 hoặc x = 3
Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
(x-2)2=(x-2)4
2=4
\(\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\left(x-2\right)^2.\left[\left(x-2\right)^2-1\right]=0\)
\(=>\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(x-2\right)^2-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=2\\x=3\end{cases}}\)