K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Gợi ý cho bạn:

Xét Aa với a nguyên dương, nhân vs can 2n-1 để dưới mẫu hết căn rồi thực hiện biến đổi thành phép trừ, sau đó phân thích theo hằng đẳng thức số 3. Nhân căn 2n-1 lức nãy vs thừa số có 2 phép cộng sau khi ph rồi cm thừa số sau nhân <1 

NV
4 tháng 12 2021

\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)

\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)

\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)

\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)

28 tháng 5 2018

ÁP DỤNG BĐT Cauchy ta có : 

\(\text{a}_1+\text{a}_2+...+\text{a}_n\ge n^n\sqrt{\text{a}_1.\text{a}_2....\text{a}_n}\)  (1) 

\(\frac{1}{\text{a}_1}+\frac{1}{\text{a}_2}+...+\frac{1}{\text{a}_n}\ge n^n\sqrt{\frac{1}{\text{a}_1}\cdot\frac{1}{\text{a}_2}\cdot...\cdot\frac{1}{\text{a}_n}}\)(2) 

Nhân (1) và (2) vế với vế tương ứng ta có được BĐT (*) 

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\text{a}_1=\text{a}_2=...=\text{a}_n\\\frac{1}{\text{a}_1}=\frac{1}{\text{a}_2}=...=\frac{1}{\text{a}_n}\end{cases}}\)

                             \(\Leftrightarrow\text{a}_1=\text{a}_2=...=\text{a}_n\)