chứng tỏ rằng mỗi biểu thức không phụ thuộc vào giá trị của biến x
A=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(x^4+x^3-x^2-2x^2-2x+2)-(x^4+x^3-3x^2-2x)$
$=(x^4+x^3-3x^2-2x+2)-(x^4+x^3-3x^2-2x)$
$=(x^4+x^3-3x^2-2x)+2-(x^4+x^3-3x^2-2x)$
$=2$ khong phụ thuộc vào giá trị của biến $x$ (đpcm)
x(5x – 3) – x 2 (x – 1) + x( x 2 – 6x) – 10 + 3x
= x.5x + x.(- 3) – [ x 2 .x + x 2 .(-1)] + x. x 2 +x. (-6x) – 10 + 3x
= 5 x 2 – 3x – x 3 + x 2 + x 3 – 6 x 2 – 10 + 3x
= ( x 3 – x 3 ) + ( 5 x 2 + x 2 – 6 x 2 ) – (3x - 3x ) - 10
= - 10
Vậy biểu thức không phụ thuộc vào biến x.
a) Rút gọn P = 3 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
b) Rút gọn Q = 9 Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.
a)P=x(2x+1)-x2(x+2)+x3-x+3
P=2x2+x-x3-2x2+x3-x+3
P=(2x2-2x2)+(x-x)+(-x3+x3)+3
P= 0 + 0 + 0 +3
P=3
Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x
x( x 2 + x + 1) – x 2 (x + 1) – x + 5
= x. x 2 + x.x+ x.1 – ( x 2 .x + x.1) – x+ 5
= x 3 + x 2 + x – x 3 – x 2 – x + 5
= ( x 3 – x 3 ) + ( x 2 – x 2 ) + (x - x) + 5
= 5
Vậy biểu thức không phụ thuộc vào biến x.
a. x(5x – 3) – x2 (x – 1) + x(x2 – 6x) – 10 + 3x
= 5x2 – 3x – x3 + x2 + x3 – 6x2 – 10 + 3x = - 10
Vậy biểu thức không phụ thuộc vào x.
b. x(x2 + x + 1) – x2 (x + 1) – x + 5
= x3 + x2 + x – x3 – x2 – x + 5 = 5
Vậy biểu thức không phụ thuộc vào x.
a. x(5x – 3) – x2 (x – 1) + x(x2 – 6x) – 10 + 3x = 5x2 – 3x – x3 + x2 + x3 – 6x2 – 10 + 3x = - 10
Vậy biểu thức không phụ thuộc vào x. b. x(x2 + x + 1) – x2 (x + 1) – x + 5 = x3 + x2 + x – x3 – x2 – x + 5 = 5
Vậy biểu thức không phụ thuộc vào x.
a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3
b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16
\(A=\left(x^2-2\right)\left(x^2+x+1\right)-x\left(x^3+x^2-3x-2\right)=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x=2\left(đpcm\right)\)