Chứng minh: 55n + 1 - 55n\(⋮\)54
Ai làm đúng + nhanh nhất mk tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
`55^(n+1)-55^n = 55^n . 55 - 55^n`
`= 55^n . (55-1) = 55^n . 54 vdots 54 forall n`
Công thức u n được viết lại: u n = 7 5 − 24 5 5 n + 7
Xét hiệu số: u n + 1 − u n = 7 5 − 24 5 5 n + 1 + 7 − 7 5 − 24 5 5 n + 7
= 24 5 1 5 n + 7 − 1 5 n + 1 + 7 > 0 ∀ n ≥ 1.
⇒ u n + 1 > u n . Vậy dãy số ( u n ) là dãy số tăng.
Ta có: 0 < 1 5 n + 7 ≤ 1 12 ∀ n ≥ 1
⇔ 0 > − 24 5 5 n + 7 ≥ − 2 5
⇔ 7 5 > 7 5 − 24 5 5 n + 7 ≥ 7 5 − 2 5 ⇔ 1 ≤ u n < 7 5 .
Suy ra ( u n ) là một dãy số bị chặn.
Kết luận ( u n ) là một dãy số tăng và bị chặn.
Chọn đáp án A.
Ta có : \(55=5\cdot11\)
Cho \(x,y\inℕ\Rightarrow55n^3=x^{5-1}y^{11-1}⋮55\) (cách tìm số ước nguyên dương của một số bằng cách phân tích ra thừa số nguyên tố)
\(\Rightarrow x^4\) hoặc \(y^{10}⋮5\) và lũy thừa của biến còn lại chia hết cho 11
\(\Rightarrow x\in\left\{5,10,11,...\right\},y\in\left\{5,10,11,...\right\}\) mà ta cần tìm \(n\) nhỏ nhất\(\Rightarrow55n^3\) nhỏ nhất vậy \(x^4y^{10}\in\left\{5^4\cdot11^{10},11^4\cdot5^{10}\right\}\Rightarrow x^4y^{10}=11^4\cdot5^{10}\left(11^4\cdot5^{10}< 5^4\cdot11^{10}\right)\)
\(\Rightarrow55n^3=11^4\cdot5^{10}\)
\(\Rightarrow n^3=11^4\cdot5^{10}\div55=11^{4-1}\cdot5^{10-1}\)
\(\Rightarrow n^3=11^3\cdot5^9\)
\(\Rightarrow n=\sqrt[3]{n^3}=\sqrt[3]{11^3\cdot5^9}=\sqrt[3]{2599609375}=1375\)
1/2 : 0,5 - 1/4 : 0,25 - 1/8 - 0,125 : 1/10 - 0,1 = 1/2 : 1/2 - 1/4 : 1/4 - 1/8 - 1/8 : 1/10 - 1/10 .
= 1 - 1 - 1/8 - 1/10 : ( 1/8 - 1 ) .
= 0 - 1/8 - 1/10 : ( -7/8 ) .
= -7/8 - 1/10 : ( -7/8 ) .
= -7/8 : ( 1 - 1/10 ) .
= -7/8 : 9/10 .
= -7/8 . 10/9 .
= -35/36 .
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=54.55^n=>chiahetcho54\)
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
k mk nha
cảm ơn