K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(BE\cdot CF\cdot BC\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AH}=AH^3\)

c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

29 tháng 7 2021

 gffffgfyh

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(HB^2=BE\cdot AB\)

\(\Leftrightarrow BE=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại A có HF là đường cao ứng với cạnh huyền AC, ta được:

\(CH^2=CF\cdot CA\)

\(\Leftrightarrow CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}:\dfrac{AB}{AC}\)

\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:

$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$

$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)

Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$

$\Rightarrow EF=HA$

$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:

$AH^2=HB.HC(3)$

Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

10 tháng 9 2021

    Xét tam giác ABC vuông tại A, có đường cao AH.

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

10 tháng 9 2021

Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

 

 

15 tháng 4 2021

undefinedundefined

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)