Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HE và HF lần lượt vuông góc với AB, AC. CM :
a) \(\dfrac{1}{AF^2}=\dfrac{1}{AB^2}+\dfrac{1}{AH^2}+\dfrac{1}{AC^2}\)
b) \(AH^3=BE.CF.BC\)
c) \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
d) \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\sqrt[3]{BC^2}\)
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)