Cho hình thang ABCD có N là trung điểm của BC .M là trung điểm của AC .Tia AN cắt AC tại E sao cho AN=NE .CM ABCD là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔDAB có
M là trung điểm của AD
ME//AB
Do đó: E là trung điểm của BD
Xét ΔABC có
N là trung điểm của BC
NF//AB
Do đó: F là trung điểm của AC
a: Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét ΔADC có
M là trung điểm của AD
MF//DC
Do đó: F là trung điểm của AC
Xét ΔBDC có
N là trung điểm của BC
NE//DC
Do đó: E là trung điểm của BD
a) Xét tam giác ABC có: AB=BC
=> Tam giác ABC cân tại B
=> \(\widehat{BAC}=\widehat{BCA}\)
Mặt khác : \(\widehat{ACB}=\widehat{ACD}\) ( CA là phân giác góc C)
=> \(\widehat{BAC}=\widehat{ACD}\)
mà hai góc này ở vị trị so le trong
=> AB//CD
=> ABCD là hình thang
b) Tam giác ABC cân tại B có M là trung điểm AC
=> BM là đường cao
Hay BM vuông AC
Mà AE vuông AC ( gt)
=> AE//BM
=> ABME là hình thang.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E