Đặt nhân tử chung
\(ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lời giải:
Đặt $a+b+c=x; ab+bc+ac=y$. Khi đó:
\(A=\frac{(x^2-2y)x^2+y^2}{x^2-y}=\frac{(x^2-y)x^2+y^2-x^2y}{x^2-y}\)
\(=\frac{(x^2-y)x^2-y(x^2-y)}{x^2-y}=\frac{(x^2-y)(x^2-y)}{x^2-y}=x^2-y\)
$=(a+b+c)^2-(ab+bc+ac)=a^2+b^2+c^2+ab+bc+ac$
a b<a+b> <a-b> + bc < b - c> < b + c >+ ca < c - a > < c + a>
a² b+ ab² + a² b - ab² + b² c -bc² +b² c + bc² + c² a -ca² + c² a +ca²
<a² b +a² b> + < ab² - ab² > + < b²c + b² c > + <-bc² + bc² > + < c² a +c² a> + <-ca² + ca² >
2 a² b + 2 b² c +2 c² a
XONG NHA NGƯỜI ANH EM
\(ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)\)
\(=a^3b-ab^3+b^3c-bc^3-ca\left(a^2-c^2\right)\)
\(=b\left(a^3-c^3\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)
\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(a^2b+abc+bc^2-b^3-a^2c-c^2a\right)\)
\(=\left(a-c\right)\left[b\left(a^2-b^2\right)+ac\left(b-a\right)+c^2\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)\left(a+b\right)-ac\left(a-b\right)-c^2\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-c\right)\left(a-b\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\left(a+b+c\right)\)