Xác định các số nguyên sao cho:
a. Đa thức: x^4+x^3+2x^2-7x-5 phân tích thành tích của 2 đa thức: x^2+2x+5 và x^2+bx+c
b. Đa thức: x^4-2x^3+2x^2-2x+a phân tích thành tích của 2 đa thức: x^2-2x+1 và x^2+bx+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dùng pp hệ số bất định
p.trình trên ko có nghiệm nguyên nên sẽ có dạng (x^2+ax+b)(x^2+cx+d).
Phá ngoặc ta đc x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd.
Kết hợp vs đề bài ta có hệ đ/k sau: a+c = -1;ac+b+d = 2;ad+bc = -11;bd= -5. (1)
Xét vs b = -1;d=5 thì (1) trở thành : a+c =-1; (2)
ac= -2;
5a-c = -11 (3)
Từ (2) và (3) ta có 6a = -12 =>a = -2
=>c = 1
=> a = -2; b = -1; c = 1; d = 5
Vậy đa thức trên khi phân tích thành nhân tử sẽ bằng (x^2 - 2x - 1)(x^2 + x + 5).
Vậy nha.
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
Bài 6:
c: \(9x^2+6x+1=\left(3x+1\right)^2\)
d: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
e: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)