Cho a>1 b>1 Tìm GTNN của biểu thức \(M=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a
Tương tự : b^2/a-1 + 4.(a-1) >= 4b
<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b
<=> G + 4a+4b-8 >= 4a+4b
<=> G >= 4a+4b-4a-4b+8 = 8
Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2
Vậy GTNN của G = 8 <=> a=b=2
Tk mk nha
đúng rồi
đúng
đúng
100000000000000000000000000000000000000000000000000%
Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)}{1+b^2}-\frac{ab^2}{1+b^2}\)
\(=a-\frac{ab^2}{1+b^2}\)
Áp dụng bđt Cô-si ta có: \(1+b^2\ge2\sqrt{b^2}=2b\)
\(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)
C/m tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)
\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng từng vế của 3 bđt trên lại ta đc
\(VT\ge a+b+c-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Ta có bđt: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)(1) với x , y , z dương
Thật vậy \(\left(1\right)\Leftrightarrow\left(x+y+z\right)^2\ge3xy+3yz+3zx\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(Luôn đúng)
Áp dụng bđt (1) ta đc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Khi đó: \(VT\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" <=> a = b = c = 1
Vậy .............
\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2b^2}{\left(b-1\right)\left(a-1\right)}}=2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)
Ta có:
\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)
\(\frac{b^2}{b-1}=\frac{b^2-4b+4+4b-4}{b-1}=\frac{\left(b-2\right)^2}{b-1}+4\ge4\)
\(\Rightarrow A\ge8."="\Leftrightarrow a=b=2\)
Ta có:
\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)
Nhận xét: a,b,c không âm nên theo BĐT Cô - si, ta có:
\(b^2+1\ge2\sqrt{b^2.1}=2b\)
=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)
=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)
Tương tự, ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)
\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)
Vậy ta suy ra
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)
Mà a+b+c = 3 nên suy ra:
\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge ab+ac+bc\)
<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
<=> \(3^2\ge3\left(ab+ac+bc\right)\)
<=> \(ab+ac+bc\le3\)
<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)
<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)
Từ 1 và 2 => \(M\ge\frac{3}{2}\)
Dấu bằng xảy ra <=> a=b=c=1
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
2 ) Ta có : \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Do a ; b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\frac{a+b}{3}-1\le0\)
\(\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+\frac{8}{a}+\frac{2}{b}+2b-\left(a+b\right)\ge8+4-3=9\)
( áp dụng BĐT Cauchy cho a ; b dương )
Dấu " = " xảy ra \(\Leftrightarrow a=2;b=1\)
Tìm min cho K, tìm max có lẽ Bunhia là ra thôi:
Đặt \(\left\{{}\begin{matrix}\sqrt{3a+1}=x\\\sqrt{3b+1}=y\\\sqrt{3x+1}=z\end{matrix}\right.\) \(\Rightarrow1\le x;y;z\le\sqrt{10}\)
\(x^2+y^2+z^2=3\left(a+b+c\right)+3=12\)
Bài toán trở thành cho \(x^2+y^2+z^2=12\), tìm min \(P=x+y+z\)
Ta có: \(\left(x-1\right)\left(x-\sqrt{10}\right)\le0\Rightarrow x^2-\left(\sqrt{10}+1\right)x+\sqrt{10}\le0\)
\(\left(y-1\right)\left(y-\sqrt{10}\right)=y^2-\left(\sqrt{10}+1\right)y+\sqrt{10}\le0\)
\(\left(z-1\right)\left(z-\sqrt{10}\right)=z^2-\left(\sqrt{10}+1\right)z+\sqrt{10}\le0\)
Cộng vế với vế:
\(x^2+y^2+z^2-\left(\sqrt{10}+1\right)\left(x+y+z\right)+3\sqrt{10}\le0\)
\(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+3\sqrt{10}}{\sqrt{10}+1}=\frac{12+3\sqrt{10}}{\sqrt{10}+1}=2+\sqrt{10}\)
\(\Rightarrow P_{min}=2+\sqrt{10}\) khi \(\left(x;y;z\right)=\left(1;1;\sqrt{10}\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị
\(M=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a^2-1}+4\left(a-1\right)-4a-4b+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}\cdot4\left(a-1\right)}-4a-4b+8=4a+4b-4a-4b+8=8\) (AM-GM)
Dấu "=" xảy ra <=> a=b=2