cmr: với mọi số nguyên dương n thì
\(n^4+2n^3+2n^2+2n+1\) không thể là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Vì d là ước nguyên dương của 2n2 => d.q= 2n2
=> n2= d.q:2
Ta có: n2+d= d.q:2+d
=> n2+d= d.(q:2+1)
Vậy n2+d không phải là số chính phương ĐPCM
này các bn oi cho mk hoi
tại sao \(d\left(\frac{q}{2}+1\right)\)ko là số cp