K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

C K A B N H M 1 1

Xét \(\Delta AMK=\Delta CMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{K_1}=\widehat{B_1}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow AK\)// \(BC\)( 1 )

Và AK = BC ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow ABCK\)là hình bình hành  ( đpcm )

b, Bạn xem lại đề bài

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI

10 tháng 8 2019

Bạn tham khảo ở đây:

https://h.vn/hoi-dap/question/820073.html

10 tháng 8 2019

băng vũ ơi! mik ko mở đc

24 tháng 6 2017

(Bạn tự vẽ hình)

Ta có: \(\Delta\)BMC=\(\Delta\)EMA (c.g.c) => BC=EA (2 cạnh tương ứng); ^AEM==^CBM => AE//BC (1)

           \(\Delta\)BNC=\(\Delta\)AND (c.g.c) => BC=AD (2 cạnh tương ứng); ^ADN=^BCN => AD//BC (2)

Từ (1) và (2) \(\Rightarrow\)EA=AD; D;A;E thẳng hàng => A là trung điểm của DE (đpcm)  

10 tháng 8 2019

=> BMC =EMC(c.g.c) <=> BC =EA (2 cạnh tương ứng) ^ AEM = ^CBM => AE/BC (1)

BNC = AND (c.g.c) <=> BC = AD (2 cạnh tương ứng) ^ADN =^BCN => AD//BC (2)

Qua (1) (2) EA =AD ; D;E;A  thẳg hàng 

a:Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó:ABCD là hình bình hành

b: Xét tứ giác AEBC có 

N là trung điểm của AB

N là trung điểm của CE

Do đó:AEBC là hình bình hành

SUy ra: AE//BC và AE=BC

=>AE=AD
Ta có: AE//BC

AD//BC

mà AE,AD có điểm chung là A

nên A,E,D thẳng hàng

mà AD=AE

nên A là trung điểm của DE

8 tháng 7 2018

chữ thấy ghê

15 tháng 7 2018

a) Xét tam giác AMD và tam giác CMB ta có:

AM = MC (gt)

Góc AMB = góc CMB ( đối đỉnh)

DM = MB (gt)

=> Tam giác AMD = tam giác CMB ( c.g.c)

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI