5+5+5+5+5+5+5+5+5+5+5+6+7=?
bài này khó quá ????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{45.47}\)
\(C=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\left(1-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\frac{46}{47}\)
\(C=\frac{115}{47}\)
100=25 .4 =5^2.4
5^2019:( 5^2013-5^2.4.5^2010)=5^2019: ( 5^2013-5^2012.4)=5^2019: (5^2012.(5-4))
=5^2019:5^2012=5^7(=78125)
Học tốt
5x = 52019 : (52013 -100*52010)
<=> 5x = 52019 : (52010 .(53-100))
<=> 5x = 52019 : (52010 . 25)
<=> 5x = 52019 : 52012
<=> 5x = 57
<=> x = 7
Vậy x = 7
Ta dùng phương pháp triệt tiêu sẽ được kết quả cuối cùng là :
1 - \(\frac{1}{15}\) = \(\frac{14}{15}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{15}\)
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{5^{2010}+1}{5^{2011}+1}< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)\(=\frac{5^{2010}+5}{5^{2011}+5}=\frac{5.\left(5^{2009}+1\right)}{5.\left(5^{2010}+1\right)}=\frac{5^{2009}+1}{5^{2010}+1}\)
\(\Rightarrow A< B\)
#)Giải :
Đầu tiên ta so sánh :
52010 và 52009
Vì 2010 > 2009 => 52010 > 52009 (1)
Tiếp theo :
1/52011 + 1 và 1/52010 + 1
Vì 2011 + 1 = 2012 và 2010 + 1 = 2011
Mà 2012 > 2011 => 1/52011 + 1 > 1/52010 + 1 (2)
Từ (1) và (2) => 52010 + 1/52011+1 > 52009+1/52010+1 => A > B
Vậy : A > B
#)Nếu đúng thì bn bảo mk nha :D
#~Will~be~Pens~#
\(5A=5^2+5^3+....+5^{2011}\)
\(5A-A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+...+5^{2011}-5\)
4A = \(5^{2011}-5\)
A = \(\frac{5^{2011}-5}{4}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2009}+5^{2010}\right)\)
\(A=30.1+30.5^2+30.5^4+....+30.5^{2008}\)
\(A=30.\left(1+5^2+5^4+....+5^{2008}\right)\)
Vậy chia hết cho 30
a: \(2x+5⋮x+1\)
=>\(2x+2+3⋮x+1\)
=>\(3⋮x+1\)
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
b: \(5x+9⋮x+2\)
=>\(5x+10-1⋮x+2\)
=>\(-1⋮x+2\)
=>\(x+2\in\left\{1;-1\right\}\)
=>\(x\in\left\{-1;-3\right\}\)
c: \(2x+11⋮x+3\)
=>\(2x+6+5⋮x+3\)
=>\(5⋮x+3\)
=>\(x+3\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-2;-4;2;-8\right\}\)
d: \(4x+9⋮2x+1\)
=>\(4x+2+7⋮2x+1\)
=>\(7⋮2x+1\)
=>\(2x+1\in\left\{1;-1;7;-7\right\}\)
=>\(2x\in\left\{0;-2;6;-8\right\}\)
=>\(x\in\left\{0;-1;3;-4\right\}\)
e: \(6x+7⋮3x+1\)
=>\(6x+2+5⋮3x+1\)
=>\(5⋮3x+1\)
=>\(3x+1\in\left\{1;-1;5;-5\right\}\)
=>\(3x\in\left\{0;-2;4;-6\right\}\)
=>\(x\in\left\{0;-\dfrac{2}{3};\dfrac{4}{3};-2\right\}\)
g: \(10x+13⋮5x+1\)
=>\(10x+2+11⋮5x+1\)
=>\(11⋮5x+1\)
=>\(5x+1\in\left\{1;-1;11;-11\right\}\)
=>\(5x\in\left\{0;-2;10;-12\right\}\)
=>\(x\in\left\{0;-\dfrac{2}{5};2;-\dfrac{12}{5}\right\}\)
63 nha
ôi dồi: lấy 5x với số lần 5 mà ta có là 5x 11+6+7= 55+13=68