Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=k\).Tính k.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=k\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}+\dfrac{2}{bc}+\dfrac{1}{c^2}+\dfrac{2}{ac}=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1\left(a+b+c\right)}{abc}=k^2\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=k^2-k\)
theo bài ra ta có:
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1=k+1\) \(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=k+1\)
vì a + b + c + d khác 0 => a = b = c = d
ta có:
\(\Rightarrow\frac{4a}{a}=\frac{4b}{b}=\frac{4c}{c}=\frac{4d}{d}=k+1\)
=> 4 = 4 = 4 = 4 = k + 1
=> k + 1 = 4
=> k = 3
vật k = 3
theo đầu bài
=>\(\dfrac{b+c+d}{a}\)=\(\dfrac{c+d+a}{b}\)=\(\dfrac{d+a+b}{c}\)=\(\dfrac{a+b+c}{d}\)=\(\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)=\(\dfrac{3\left[a+b+c+d\right]}{a+b+c+d}\)=>=3
=>k=3
chứng minh \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\left(1+\dfrac{3}{k}\right)^3\) nha bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\dfrac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}=\dfrac{3a+3b+3c+3d}{a+b+c+d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy \(k=3\)
a/c=b/d=k
=>a=ck; b=dk
=>\(\dfrac{c\cdot a^2+d\cdot b^2}{c^3+d^3}\)
\(=\dfrac{c\cdot c^2k^2+d\cdot d^2k^2}{c^3+d^3}=k^2\)
Theo tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
=> k = 3
sửa: \(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)
giải:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}\\ =\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\\ =\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3=k\)
vậy k=3
áp dụng tính chất dãy tỉ số băng nhau ta có
\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1
=>k=1