K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb

ĐKĐB \(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)

\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)

\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)

Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ. 

Mà √22 là số vô tỉ (đây là bài toán quen thuộc)

Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.