cho tam giác abc vuông ở A, Kẻ đường cao AH. Từ H kẻ tia Hx Vuông góc với AB tại F và tia Hy Vuông góc với Ac Tại Q. Trên Các tia Hx và Hy lần lượt lấy các điểm D và E Sao cho PH=PD, QH=QE .CM:
A là trung điểm của DE
PQ=1/2 DE
PQ=Ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
Hok tốt nhaaaa ~
a: Xét ΔEMH có
EP vừa là đường cao, vừa là trung tuyến
=>ΔEMH cân tại E
Xét ΔFHN có
FQ vừa là đường cao, vừa là trung tuyến
=>ΔFHN cân tại F
b:
Xét ΔAMH có
AP vừa làđường cao, vừa là trung tuyến
=>ΔAMH cân tại A
=>AM=AH
Xét ΔAHN có AQ vừa là đường cao, vừa là trung tuyến
=>ΔAHN cân tại A
=>AH=AN=AM
Xét ΔAME và ΔAHE có
AM=AH
góc MAE=góc HAE
AE chung
=>ΔAME=ΔAHE
=>góc AME=góc AHE
Xé ΔAHF và ΔANF có
AH=AN
góc HAF=góc NAF
AF chung
=>ΔAHF=ΔANF
=>góc AHF=góc ANF
=>góc AHE=góc AHF
=>HA là phân giác của góc EHF
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có
AI chung
IH=ID(gt)
Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)
Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)
Xét ΔAHK vuông tại K và ΔAEK vuông tại K có
AK chung
HK=EK(gt)
Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)
Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)
Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)
\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)
\(=2\cdot\widehat{BAC}\)(đpcm)
a: Xét ΔAHD có
AP là đường cao, là đường trung tuyến
nên ΔAHD cân tại A
mà AP là đường cao
nên AP là phân giác của góc HAD(1)
Xét ΔAHE có
AQ là đường cao, là đường trung tuyến
nên ΔAHE cân tại A
mà AQ là đường cao
nên AQ là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2x90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔHED có Q,P lần lượt là trung điểm của HE,HD
nên ΔHED cân tại H
=>QP=1/2ED
c: Xét tứ giác APHQ có góc APH=góc AQH=góc PAQ=90 độ
nên APHQ là hình chữ nhật
=>AH=PQ