Tìm GTNN của : C= (x-1)(x+2)(x+3)(x+4)
#gIÚP_mjk_đê_ai_nhanh_nhất_mjk_check_cko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Có: \(\begin{cases}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\\left|x-3\right|\ge3-x\\\left|x-4\right|\ge4-x\end{cases}\) với mọi x
Do đó, \(D\ge\left(x-1\right)+\left(x-2\right)+\left(3-x\right)+\left(4-x\right)\)
hay \(D\ge4\)
Dấu "=" xảy ra khi \(\begin{cases}x-2\ge0\\3-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2\\x\le3\end{cases}\)\(\Rightarrow2\le x\le3\)
Vậy GTNN của C là 4 khi \(2\le x\le3\)
\(A=4-x^2+3\)
\(=-x^2+7\le7\)
Khi x=0
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+4\) thì
\(=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
A=(x+1)(x+2)(x+3)(x+4)=(x+1)(x+4)(x+2)(x+3)=(x^2+5x+4)(x^2+5x+6)
Đặt x^2+5x=t =>A=(t+4)(t+6)=t^2+10t+24=(t+5)^2-1 lớn hơn hoặc bằng -1
Dấu bằng xảy ra khi t=-5 từ đó giải ra x
mik chỉ nghĩ đc cái này thôi
(x+1)(x+2)(x+3)(x+4)
mơn bn nhennnn