(2x-1)^8=(2x-1)^18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
a)
-2x+3=-7
-2x=-7-3
-2x=-10
x=-10:-2
x=5
b)(-3)x+1=-8
-3x=-8-1
-3x=-9
x=-9 :-3
x=3
c)[2x+1]=5 ( cái này à trị tuyệt đối đúng k ?) nếu dấu [ là dấu giá trị tuyệt đối
=>\(\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
=>\(\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)
=>\(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
vậy x \(\in\left\{2;-3\right\}\)
d)|2x-1|-3=18
|2x-1|=21
=> \(\orbr{\begin{cases}2x-1=21\\2x-1=-21\end{cases}}\)
=>\(\orbr{\begin{cases}2x=22\\2x=-20\end{cases}}\)
=>\(\orbr{\begin{cases}x=11\\x=-10\end{cases}}\)
vậy \(x\in\left\{11;-10\right\}\)
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)
\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)
\(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)
\(=\dfrac{7x+4x-6-x\left(2x+3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{11x-6-2x^2-6x}{2x\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+5x-6}{2x\left(2x-3\right)\left(2x+3\right)}\)
\(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
Ta thừa nhận kết luận sau: Số 1 với bất kì số mũ nào cũng là chính nó.
\(\Rightarrow2x-1=1\) thì \(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
Giải \(2x-1=1\) ta có:
\(2x-1=1\Leftrightarrow2x=2\Leftrightarrow x=1\)
tthctv xem lại nhá :)
\(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^{18}-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^8\left[\left(2x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1-1\right)\left(2x-1+1\right)=0\)
\(\Leftrightarrow\)\(2x\left(2x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(2x=0\)\(\Leftrightarrow\)\(x=0\)
Hoặc \(2x-1=0\)\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Hoặc \(2x-2=0\)\(\Leftrightarrow\)\(x=1\)
Vậy \(x=0\)\(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~