Chứng minh rằng với \(n\in N\)thì ( n + 18 ) . ( n + 19 ) \(⋮\)2
Ai nhanh mik tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
xét n là số lẻ
=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2
xét n là số chẵn
=.(n+12) là số chẵn =>(n+3) (n+12) chia hết cho 2
Xét 3 số tự nhiên liên tiếp \(2005^n,2005^n+1,2005^n+2\) luôn có ít nhất 1 số chia hết cho 3
Mà:\(2005\equiv1\)(mod 3)
\(\Rightarrow2005^n\equiv1^n=1\)(mod 3)
\(\Rightarrow2005^n\) không chia hết cho 3
Nên trong 2 số \(2005^n+1,2005^n+2\) luôn có 1 số chia hết cho 3
\(\Rightarrow\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k\left(k\in N\right)\)Ta có :
\(\left(2005^n+1\right)\left(2005^n+2\right)=\left(2005^{2k}+1\right)\left(2005^{2k}+2\right)\)
\(=\left(2005^{2k}+1\right)\left(2005^{2k}-1+3\right)\)
Vì \(2005^{2k}-1⋮2004⋮3\) do đó \(\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k+1\) thì \(2005^n+1=2005^{2k+1}+1⋮2007⋮3\)
Ta có ngay ĐPCM
\(\left(n-5\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2-3\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(-3\right)⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
Lời giải:
Liên hợp ta thấy:
\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)
\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)
Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)
------------------------
Áp dụng vào bài toán:
\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)
\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)
Và:
\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)
\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)
Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)
Hok tốt!!!
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
( n + 18 ) ( n + 19 )
Với n lẻ
=> n + 19 chẵn
=> n + 19 chia hết cho 2
=> ( n + 18 ) ( n + 19 ) chia hết cho 2
Với n chẵn
=> n + 18 chẵn
=> n + 18 chia hết cho 2
=> ( n + 18 ) ( n + 19 ) chia hết cho 2
Vậy \(\left(n+18\right).\left(n+19\right)⋮2\)
( n + 18 ) ( n + 19 )
Với n lẻ
=> n + 19 chẵn
=> n + 19 chia hết cho 2
=> ( n + 18 ) ( n + 19 ) chia hết cho 2
Với n chẵn
=> n + 18 chẵn
=> n + 18 chia hết cho 2
=> ( n + 18 ) ( n + 19 ) chia hết cho 2 với mọi n\(\varepsilonℕ\)