K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(=1.4+3^2.4+...+3^{48}.4\)

\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)

b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)

\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)

\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)

Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)

Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)

Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4

24 tháng 10 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)

23 tháng 4 2023

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )

= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )

= 1 . 4 + 32 . 4 + ... + 356 . 4

= 4( 1 + 32 + ... + 356 ) ⋮ 4

Vậy A ⋮ 4

Lại có S = 1 + 3 + 32 + 33 + ... + 357 

S - 1 = 3 + 32 + 33 + ... + 357 

         = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 355 + 356 + 357 )

         = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 ) 

         = 3 . 13 + 34 . 13 + ... + 355 . 13

         = 13( 3 + 34 + ... + 355 ) ⋮ 13

Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = 3 + 32 + 33 + 34 + ... + 358

3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )

2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )

S = ( ...8 ) : 2 = ( ...4 )

Vậy chữ số tận cùng của S là 4

 
23 tháng 4 2023

mn giúp mình với

18 tháng 1 2022

mk chịu thôi

mk dốt toán lắm

18 tháng 1 2022

Tôi chịu

11 tháng 2 2017

a.S=3+32...+3100

=(3+32)+...+(399+3100)

=3(1+3)+...+399(1+3)

=3.4+...+399.4

=4(3+...+399)\(⋮\)4

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15