chung minh rang neu ab=2xcd thi abcd chia het cho 67
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra, ta có:
ab = 2cd (1)
abcd = ab.100 + cd.1 (2)
Thay (1) vào (2), ta có
abcd = cd.2.100 + cd.1
= cd.200 + cd.1
= cd.(200 + 1)
= cd.201
Vì 201 chia hết cho 67 nên cd.201 chia hết cho 67 hay abcd chia hết cho 67 (đpcm)
b, Vì ab + cd + eg chia hết cho 11 nên ab, cd, eg chia hết cho 11. (1)
Theo bài ra, ta có:
abcdeg = ab.10000 + cd.100 + eg.1
Từ (1), ta có ab.10000 + cd.100 + eg.1 chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)
c,Tương tự như phần b bạn nhé
Nếu đúng thì bạn tick cho mình nha
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
Ta có:
\(\overline{abcd}\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
Vì \(99\overline{ab}\text{⋮}99\) và \(\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
nên \(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\) (đpcm)
Điều ngược lại:
\(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\overline{abcd}\text{⋮}99\) (đpcm)
Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự
abcd \(⋮\) 101
<=> abcd = 101k (k > 10 ; k \(\in\)N)
<=> ab = cd
=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)
* Chú thích (ko ghi vào)
\(⋮\) là dấu chia hết
đcpm là điều phải chứng minh
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.Nếu ko thì 4 số dư theo thứ tự 0,1,2,3