cho \([(1+2+3+...+n)-7]\)
cm biểu thức trên không chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Mình chỉ làm mẫu một câu thôi, mấy câu này giống nhau về cách làm :))
a) Thực hiện phép chia đa thức 3n3 + 10n2 - 5 cho đa thức 3n + 1 được thương là n2 + 3n - 1 và dư -4
Vậy để 3n3 + 10n2 - 5 ⋮ 3n + 1 thì -4 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(4) = { 1; 2; 4; -1; -2; -4 }
=> n thuộc { 0; 1/3; 1; -2/3; -1; -5/3 }
Mà n nguyên => n thuộc { 0; 1; -1 }
b) d) tương tự
c) hơi khác mình làm nốt
Thực hiện phép chia đa thức x4 - x3 + 6x2 - x + n cho đa thức x2 - x + 5 ta được số dư là n - 5
Để phép chia trên là phép chia hết thì số dư phải bằng 0
=> n - 5 = 0
<=> n = 5
Vậy n = 5
a: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
mà n là số nguyên
nên \(n\in\left\{0;-1;1\right\}\)
b: \(\Leftrightarrow10n^2-10n+11n-11+1⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
c: \(\Leftrightarrow x^4-x^3+5x^2+x^2-x+5+n-5⋮x^2-x+5\)
=>n-5=0
hay n=5