K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

Ta có: 

2019.2020-1/2019.2020= 2019.2020/2019.2020 - 1/2019.2020

                                       =1-1/2019.2020

Tương tự:

2020.2021-1/2020.2021= 1-1/2020.2021

Vì 1/2019.2020 > 1/2020.2021 nên -1/2019.2020 < -1/2020.2021

(vì là số nguyên âm)

⇒ 1-1/2019.2020 < 1-1/2020.2021

⇔ 2019.2020-1/2019.2020 < 2020.2021-1/2020.2021

Chúc bạn học tốt!

25 tháng 5 2017

63548 + 19256 82804         52379 + 38421 90800         29107 + 34693 63800         93959 + 6041 100000

8 tháng 10 2020

\(A=\frac{1.2}{2.2}\cdot\frac{2.3}{3.3}\cdot\frac{3.4}{4.4}\cdot...\cdot\frac{2020.2021}{2021.2021}\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2020}{2021}\)

\(A=\frac{1.2.3.....2020}{2.3.4.....2021}\)

\(A=\frac{1}{2021}\)

8 tháng 10 2020

\(B=\frac{2020.2021-2020.2020}{2020.2019+2020.2}\)

\(B=\frac{2020.\left(2021-2020\right)}{2020.\left(2019+2\right)}\)

\(B=\frac{1}{2021}\)

Từ đó ta thấy 2 biểu thức bằng nhau

24 tháng 1 2019

Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :

\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)

\(\Leftrightarrow7x\ge0\)

\(\Leftrightarrow x\ge0\)

Từ điều kiện này của x ta có phương trình :

\(x+1+2x+15+3x+6041=7x\)

\(\Leftrightarrow6x+6057=7x\)

\(\Leftrightarrow7x-6x=6057\)

\(\Leftrightarrow x=6057\)

Vậy tập nghiệm của pt là S = { 6057 }

16 tháng 8 2018

555555555555500000000000000.................

16 tháng 8 2018

Ta có : \(\frac{2017.2018+1}{2017.2018}=1+\frac{1}{2017.2018}\)

             \(\frac{2018.2019+1}{2018.2019}=1+\frac{1}{2018.2019}\)

Mà : \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\) => \(\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)

3 tháng 4 2021

\(\dfrac{1}{2020}-\dfrac{1}{2021}=\dfrac{2021}{2020.2021}-\dfrac{2020}{2020.2021}=\dfrac{2021-2020}{2020.2021}=\dfrac{1}{2020.2021}\)

\(\dfrac{1}{2020\cdot2021}=\dfrac{2021-2020}{2020\cdot2021}=\dfrac{1}{2020}-\dfrac{1}{2021}\)(đpcm)

17 tháng 1 2018

\(\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Ta thấy      \(2017.2018< 2018.2019\)

nên      \(\frac{1}{2017.1018}>\frac{1}{2018.2019}\)

\(\Rightarrow\)\(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

Vậy      \(\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)