K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 9 2018

Lời giải:
Biến đổi tương đương:

\(a^2+b^2+c^2+d^2\geq ab+ac+ad\)

\(\Leftrightarrow 2a^2+2b^2+2c^2+2d^2\geq 2ab+2ac+2ad\)

\(\Leftrightarrow (\frac{a^2}{2}+2b^2-2ab)+(\frac{a^2}{2}+2c^2-2ac)+(\frac{a^2}{2}+d^2-2ad)+\frac{a^2}{2}\geq 0\)

\(\Leftrightarrow \frac{a^2+4b^2-4ab}{2}+\frac{a^2+4c^2-4ac}{2}+\frac{a^2+4d^2-4ad}{2}+\frac{a^2}{2}\geq 0\)

\(\Leftrightarrow \frac{(a-2b)^2}{2}+\frac{(a-2c)^2}{2}+\frac{(a-2d)^2}{2}+\frac{a^2}{2}\geq 0\)

(luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=d=0$