Giải pt: \(x^2-2x-1+\frac{2}{x}+\frac{1}{x^2}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mới lớp 8, chịu
Mà hình như trong pt phân số thứ 2 thiếu bình phương thì phải
Ta có : \(\frac{2}{2x-6}+\frac{1}{x+2}+\frac{2.x}{\left(x+1\right).\left(3-x\right)}=0\)
ĐKXĐ : x \(\ne\)-1 ; x \(\ne\)-2 ; x \(\ne\)3
MTC : ( x + 1 ) . ( x+ 2 ) . ( x - 3 )
<=> ( x + 1 ) . ( x + 2 ) + ( x + 1 ) . ( x + 3 ) - 2.x. ( x + 2 ) = 0
<=> x2 + x + 2.x + 2 + x2 -3.x + x -3 - 2.x2 -4.x = 0
<=> -3.x = 1
<=> x = \(\frac{-1}{3}\)
Vậy S = { \(\frac{-1}{3}\)}
ĐKXĐ: x khác 3, x khác -1
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-1}{3-x}+\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-x-1}{\left(3-x\right)\left(x+1\right)}+\frac{3-x}{\left(3-1\right)\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-2x+4}{\left(3-x\right)\left(x+1\right)}=0\)
<=> -2x+4=0
<=>x=-2
vậy ....
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
ĐKXĐ: x khác -1
Đặt \(\frac{x}{\left(x+1\right)}=y\), ta có:
\(2y^2-5y+3=0\)
\(\Leftrightarrow2y^2-2y-3y+3=0\)
\(\Leftrightarrow2y\left(y-1\right)-3\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(2y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{3}{2}\end{cases}}\)
Sau đó thay từng giá trị của y vào \(\frac{x}{x+1}\)
ĐKXĐ: ...
Đặt \(\left|2x-\frac{1}{x}\right|=a\ge0\Rightarrow4x^2+\frac{1}{x^2}=a^2+4\)
\(a^2+4+a-6=0\)
\(\Leftrightarrow a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-\frac{1}{x}\right|=1\Rightarrow\left[{}\begin{matrix}2x-\frac{1}{x}=1\\2x-\frac{1}{x}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\) \(\Rightarrow...\)
ĐK: \(x\ne\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)
\(tan\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow2x-\dfrac{\pi}{3}=arctan\left(-\dfrac{1}{2}\right)+k\pi\)
\(\Leftrightarrow2x=\dfrac{\pi}{3}+arctan\left(-\dfrac{1}{2}\right)+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{1}{2}arctan\left(-\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\in\left(0;\pi\right)\)
...
a) Ta có: 3x-6=0
⇔3(x-2)=0
mà 3≠0
nên x-2=0
hay x=2
Vậy: x=2
b) Ta có: (2x+6)(2x+12)=0
⇔\(2\left(x+3\right)\cdot2\cdot\left(x+6\right)=0\)
mà 2≠0
nên \(\left[{}\begin{matrix}x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-6\end{matrix}\right.\)
Vậy: x∈{-3;-6}
c) Ta có: 2x-36=0
⇔2(x-18)=0
mà 2≠0
nên x-18=0
hay x=18
Vậy: x=18
d) ĐKXĐ: x∉{-1;2}
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{-15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{-15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow x-2-5\left(x+1\right)=-15\)
\(\Leftrightarrow x-2-5x-5+15=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
mà -4≠0
nên x-2=0
hay x=2(ktm)
Vậy: x∈∅
\(x^2-2x-1+\frac{2}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}-1\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{x}-1=0\)
Làm nôt