Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mới lớp 8, chịu
Mà hình như trong pt phân số thứ 2 thiếu bình phương thì phải
ĐKXĐ: x khác -1
Đặt \(\frac{x}{\left(x+1\right)}=y\), ta có:
\(2y^2-5y+3=0\)
\(\Leftrightarrow2y^2-2y-3y+3=0\)
\(\Leftrightarrow2y\left(y-1\right)-3\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(2y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{3}{2}\end{cases}}\)
Sau đó thay từng giá trị của y vào \(\frac{x}{x+1}\)
2/ x2 - 6x + 4 + \(2\sqrt{2x-1}\)= 0
<=> (x2 - 4x + 4) - (2x - 1 - \(2\sqrt{2x-1}\)+1) = 0
<=> (x - 2)2 - (1 - \(\sqrt{2x-1}\))2 = 0
\(\Leftrightarrow\left(x-1-\sqrt{2x-1}\right)\left(x-3+\sqrt{2x-1}\right)=0\)
Làm tiếp nhé
\(\Leftrightarrow2x^4+3x^2\left(x^2+1\right)-2\left(x^2+1\right)^2=0\Leftrightarrow3x^4-x^2-2=0\)
\(x^2=1hoặcx^2=-\frac{2}{3}\left(L\right)\Leftrightarrow x=+-1\)
\(\frac{2x^4}{\left(x^2+1\right)^2}+\frac{3x^2}{x^2+1}-2=0\)
\(\frac{2x^2}{\left(x^2+1\right)^2}+\frac{3x^2\cdot\left(x^2+1\right)}{\left(x^2+1\right)^2}-2=0\)
\(2x^2+3x^4+3x^2-2=0\)
2*(x2-1)+3x2(x2+1)=0
đến đây thì chịu rồi
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(x^2-2x-1+\frac{2}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}-1\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{x}-1=0\)
Làm nôt