\(\text{Tìm x biết: (x+1)^3-(x-1)^3 -6(x-1)^2 =-10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + 1 ) 3 – ( x – 1 ) 3 – 6 ( x – 1 ) 2 = - 10 ⇔ x 3 + 3 x 2 + 3 x + 1 – ( x 3 – 3 x 2 + 3 x – 1 ) – 6 ( x 2 – 2 x + 1 ) = - 10 ⇔ x 3 + 3 x 2 + 3 x + 1 – x 3 + 3 x 2 – 3 x + 1 – 6 x 2 + 12 x – 6 = - 10
ó 12x – 4 = -10
ó 12x = -10 + 4
ó 12x = -6
ó x = - 1 2
Đáp án cần chọn là: A
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
1) 2(x + 5) + 3(x + 7) = 41
2x + 10 + 3x + 21 = 41
5x + 31 = 41
5x = 10
x = 2
6) 7(x - 1) + 5(3 - x) = 11x - 10
7x - 7 + 15 - 5x = 11x - 10
2x + 8 = 11x - 10
-9x = -18
x = 2
2) 5(x + 6) + 2(x - 3) = 38
5x + 30 + 2x - 6 = 38
7x + 24 = 38
7x = 14
x = 2
7) 4(2 + x) + 3(x - 2) = 12
8 + 4x + 3x - 6 = 12
7x + 2 = 12
7x = 10
x = 10/7
3) 7(5 + x) + 2(x - 10) = 15
35 + 7x + 2x - 20 = 15
9x + 15 = 15
9x = 0
x = 0
8) 5(2 + x) + 4(3 - x) = 10x - 15
10 + 5x + 12 - 4x = 10x - 15
x + 22 = 10x - 15
9x = 37
x = 37/9
4) 3(x + 4) + (8 - 2x) = 22
3x + 12 + 8 - 2x = 22
x + 20 = 22
x = 2
9) 7(x - 2) + 5(3 - x) = 11x - 6
7x - 14 + 15 - 5x = 11x - 6
2x + 1 = 11x - 6
-9x = -7
x = 7/9
5) 4(x + 5) + 3(7 - x) = 49
4x + 20 + 21 - 3x = 49
x + 41 = 49
x = 8
10) 5(3 - x) + 5(x + 4) = 6 + 4x
15 - 5x + 5x + 20 = 6 + 4x
35 = 6 + 4x
4x = 29
x = 29/4
1) 2(x + 5) + 3(x + 7) = 41
2x + 10 + 3x + 21 = 41
5x + 31 = 41
5x = 41 - 31
5x = 10
x = 10 : 5
x = 2
2) 5(x + 6) + 2(x - 3) = 38
5x + 30 + 2x - 6 = 38
7x + 24 = 38
7x = 38 - 24
7x = 14
x = 14 : 7
x = 2
3) 7(5 + x) + 2(x - 10) = 15
35 + 7x + 2x - 20 = 15
9x + 15 = 15
9x = 15 - 15
9x = 0
x = 0
4) 3(x + 4) + (8 - 2x) = 22
3x + 12 + 8 - 2x = 22
x + 20 = 22
x = 22 - 20
x = 2
5) 4(x + 5) + 3(7 - x) = 49
4x + 20 + 21 - 3x = 49
x + 41 = 49
x = 49 - 41
x = 8
6) 7(x - 1) + 5(3 - x) = 11x - 10
7x - 7 + 15 - 5x = 11x - 10
2x - 11x + 8 = -10
-9x = -10 - 8
-9x = -18
x = -18 : (-9)
x = 2
7) 4(2 + x) + 3(x - 2) = 12
8 + 4x + 3x - 6 = 12
7x + 2 = 12
7x = 12 - 2
7x = 10
x = 10/7
8) 5(2 + x) + 4(3 - x) = 10x - 15
10 + 5x + 12 - 4x = 10x - 15
10x - 15 = x + 22
10x - x = 22 + 15
9x = 37
x = 37/9
9) 7(x - 2) + 5(3 - x) = 11x - 6
7x - 14 + 15 - 5x = 11x - 6
11x - 6 = 2x + 1
11x - 2x = 1 + 6
9x = 7
x = 7/9
10) 5(3 - x) + 5(x + 4) = 6 + 4x
15 - 5x + 5x + 20 = 6 + 4x
6 + 4x = 35
4x = 35 - 6
4x = 29
x = 29/4
\(a,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=0\\ \Rightarrow\left(x^3-27\right)+x\left(4-x^2\right)=0\\ \Rightarrow x^3-27+4x-x^3=0\\ \Rightarrow4x-27=0\\ \Rightarrow4x=27\\ \Rightarrow x=\dfrac{27}{4}\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\\ \Rightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-10\\ \Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Rightarrow12x+6=0\\ \Rightarrow12x=-6\\ \Rightarrow x=-\dfrac{1}{2}\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)