chứng minh rằng nếu số tự nhiên a chia cho 3 dư 1, số tự nhiên b chia cho 3 dư 2 thì a.b chia 3 dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Ta có a = 3q+a, b = 3q+2
a+b = 3q+1+3q+2 ó a+b = 6q+3 ta thấy 6q+3 chia hết cho 3.
Vậy a+b chia hết cho 3
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
ta có : a = 3m +1 và b = 3n +2 (với n,m là STN)
=> a nhân b = (3m + 1)(3n + 2) = 9nm + 6m + 3n + 2 = 3(3mn + 2m + n) + 2
suy ra : a nhân b chia 3 dư 2