so sánh:
a) 99^20 và 9999^10
b) (-32)^27 và (-18)^39
c) 2^91 và5^35
d) 2^225 và 3^150
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801< 9999\)nên \(9801^{10}=9999^{10}\)
Vậy \(99^{20}< 9999^{10}\)
a, 2^27 = 2^3.9 = 8^9
3^18 = 3^2.9 = 9^9
vì 8<9 => 8^9 < 9^9 => 2^27 < 3^18
a, Ta có:
\(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\)nên \(2^{225}< 3^{150}\)
b, Ta có:
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
Ta có 2225 = (23)75 = 875
3150 = (32)75 = 975
Vậy 2225 < 3150
Ta có:
291 = (213)7 = 81927
535 = (25)7 = 31257
Vì 81927 > 31257
=> 291 > 535
Ta có:
9920 = 9910.9910 < 9910.10010 < 9910.10110 = 999910
=> 9920 < 999910
a) \(2^{225}\) và \(3^{150}\)
Ta có : \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì 875 < 975 nên 2225 < 3150
b) \(2^{91}\) và \(5^{35}\)
Ta có : \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì 81927 > 31257 nên 291 > 535
c) Ta có : \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Vậy 9920 < 999910
Chúc bạn học tốt :))
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
a: \(2^{225}=8^{75}\)
\(3^{150}=9^{75}\)
mà 8<9
nên \(2^{225}< 3^{150}\)
b: \(2^{91}=8192^7\)
\(5^{35}=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)
a) Ta có: \(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
\(\Rightarrow8^{75}< 9^{75}\)\(\Rightarrow2^{225}< 3^{150}\)
b) Ta có : \(2^{91}=2^{7.13}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
\(\Rightarrow8192^7>3125^7\)\(\Rightarrow2^{91}>3^{35}\)
c) Ta có: \(99^{20}=99^{2.10}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Vì 99<101 \(\Rightarrow\left(99.99\right)^{10}< \left(99.101\right)^{10}\)\(\Rightarrow99^{20}< 9999^{10}\)