Tìm GTNN của biểu thức
\(C=x^2-2x+y^2-4y+7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
a) Ta có: \(A=x^2-5x+11\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)
hay \(x=\frac{5}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\) là \(\frac{19}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\)
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7
\(A=5-x^2+2x-4y^2-4y=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\\ =-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
vậy MAX A=7 tại \(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
đặt: \(t=x^2+5x\) khi đó:
\(D=\left(t-6\right)\left(t+6\right)\\ D=t^2-36\ge-36\)
đẳng thức xảy ra khi :
\(t=0\\ \Leftrightarrow x^2+5x=0\\ x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
vậy MAX D=-36 tại x=0 hoặc x=-5
4M = 4x^2+4y^2-4xy+8x-16y-8072
= [(4x^2-4xy+y^2)-2.(2x+y).2+4]+(3y^2-12y+12)-8088
= [(2x-y)^2-2.(2x-y).2+4]+3.(y^2-4y+4)-8088
= (2x-y-2)^2+3.(y-2)^2-8088 >= -8088
=> M >= -2022
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2=0 <=> x=y=2
Vậy GTNN của M = -2022 <=> x=y=2
Tk mk nha
Đặt \(A=x^2+y^2+2x+4y+16\)
\(A=\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+11\)
\(A=\left(x+1\right)^2+\left(y+2\right)^2+11\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow A\ge11\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(A_{Min}=11\Leftrightarrow\left(x;y\right)=\left(-1;-2\right)\)
\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của \(C\) là \(2\) khi \(x=1\) và \(y=2\)
Chúc bạn học tốt ~