Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2-2x+y^2-4y+7\)
\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của \(C\) là \(2\) khi \(x=1\) và \(y=2\)
Chúc bạn học tốt ~
4M = 4x^2+4y^2-4xy+8x-16y-8072
= [(4x^2-4xy+y^2)-2.(2x+y).2+4]+(3y^2-12y+12)-8088
= [(2x-y)^2-2.(2x-y).2+4]+3.(y^2-4y+4)-8088
= (2x-y-2)^2+3.(y-2)^2-8088 >= -8088
=> M >= -2022
Dấu "=" xảy ra <=> 2x-y-2=0 và y-2=0 <=> x=y=2
Vậy GTNN của M = -2022 <=> x=y=2
Tk mk nha
Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
M = x2 + y2 + x + 4y = (x2 + x + 0,25) + (y2 + 4y + 4) - 0,25 - 4
= (x + 0,5)2 + (y + 2)2 - 4,25 \(\ge\)-4,25
Đặt \(A=x^2+y^2+2x+4y+16\)
\(A=\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+11\)
\(A=\left(x+1\right)^2+\left(y+2\right)^2+11\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow A\ge11\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(A_{Min}=11\Leftrightarrow\left(x;y\right)=\left(-1;-2\right)\)