K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

1,\(VT=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}+\dfrac{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)\(=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)^2+cos^2\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right).sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)

\(=\dfrac{1}{\dfrac{1}{2}.sin\left(\dfrac{\pi}{2}+x\right)}=\dfrac{2}{cosx}=VP\)

2,\(VT=\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(=\left(sin^2-cos^2x\right)\left(1-2sin^2x.cos^2x\right)\)\(=-cos2x\left(1-\dfrac{1}{2}sin^22x\right)\)\(=-\dfrac{cos2x\left(2-sin^22x\right)}{2}=-\dfrac{cos2x\left(1+cos^22x\right)}{2}\)

\(VP=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)=-\dfrac{7}{8}cos2x-\dfrac{1}{8}\left[4cos^32x-3cos2x\right]=-\dfrac{7}{8}.cos2x-\dfrac{1}{2}cos^32x+\dfrac{3}{8}cos2x\)

\(=-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos^32x=\dfrac{-cos2x\left(1+cos^22x\right)}{2}\)

\(\Rightarrow VT=VP\)(đpcm)

3, \(VT=3-4\left(1-2sin^2x\right)+1-2sin^22x=8sin^2x-2sin^22x=8sin^2x-8.sin^2x.cos^2x=8sin^2x\left(1-cos^2x\right)=8sin^4x=VP\)

4,\(VP=\dfrac{1}{2}\left[sin\left(x+\dfrac{\pi}{2}\right)+sin\left(3x+\dfrac{\pi}{6}\right)\right]-\dfrac{1}{2}\left[cos\left(3x-\dfrac{\pi}{3}\right)+cos\left(x+\pi\right)\right]\)

\(=\dfrac{1}{2}\left(cosx+sin3x.\dfrac{\sqrt{3}}{2}+\dfrac{cos3x}{2}\right)-\dfrac{1}{2}\left(\dfrac{cos3x}{2}+sin3x.\dfrac{\sqrt{3}}{2}-cosx\right)\)

\(=\dfrac{1}{2}.2cosx=cosx=VP\)

5, \(VP=4cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\dfrac{\sqrt{3}}{2}+\dfrac{cosx}{2}\right)^2\)\(=cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\sqrt{3}+cosx\right)^2\)

\(VT=2.cos\left(2x-\dfrac{\pi}{6}\right)+2.sin\left(2x-\dfrac{\pi}{6}\right).cos\left(2x-\dfrac{\pi}{6}\right)=2cos\left(2x-\dfrac{\pi}{6}\right)\left[1+sin\left(2x-\dfrac{\pi}{6}\right)\right]\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(1+\dfrac{sin2x.\sqrt{3}}{2}-\dfrac{cos2x}{2}\right)\)\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x+cos^2x+sinx.cosx.\sqrt{3}-\dfrac{cos^2x-sin^2x}{2}\right)\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.\dfrac{3}{2}+sinx.cosx.\sqrt{3}+\dfrac{cos^2x}{2}\right)\)\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.3+2sinx.cosx.\sqrt{3}+cos^2x\right)\)

\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sinx.\sqrt{3}+cosx\right)^2\)

\(\Rightarrow VT=VP\) (dpcm)

5 tháng 7 2021

làm mỏi tay khonng chị mà ít tick à =((

26 tháng 5 2021

 

\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )

\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)

\(\Rightarrow4x-4-7x+14=10-2x-x\)

\(\Leftrightarrow-3x+2x+x=10+4-14\)

\(\Leftrightarrow0=0\)

          Vậy pt đã cho có nghiệm đúng với mọi x

26 tháng 5 2021

20 tháng 7 2021

\(\dfrac{7}{8x}+\dfrac{5-x}{4x^2-8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\)
ĐKXĐ: x ≠ 0; x ≠ 2

\(< =>\dfrac{14x-28+20-4x}{16x\left(x-2\right)}=\dfrac{8x-8+2x}{16x\left(x-2\right)}\)
Suy ra: 14x - 28 + 20 - 4x = 8x - 8 + 2x
<=> 14x - 8x - 2x - 4x = 28 - 20 - 8
<=> 0x = 0
Vậy: S = { x | x ≠ 0;2 }

23 tháng 1 2019

bài này bn dùng dảy tỉ số bằng nhau nha ! bn xem lại đề hộ mk nhé

24 tháng 1 2019

Đề mk ghi đúng mà!

ĐKXĐ: x∉{0;2}

Ta có: \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

\(\Leftrightarrow\frac{5-x}{4x\left(x-2\right)}+\frac{7}{8x}-\frac{x-1}{2x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}=0\)

Suy ra: \(10-2x+7x-14-4x+4-x=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2\right\}\end{matrix}\right.\)

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}

14 tháng 11 2018

\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-x^8}+\dfrac{1}{x^8+y^8}\right)=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

NV
14 tháng 11 2018

\(=\dfrac{x+y+x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{2x}{x^2-y^2}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{4x^3}{x^4-y^4}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{8x^7}{x^8-y^8}+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-y^8}+\dfrac{1}{x^8+y^8}\right)\)

\(=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

30 tháng 4 2017

\(\Leftrightarrow\) \(\dfrac{7}{8x}\)+\(\dfrac{5-x}{4x\left(x-2\right)}\)= \(\dfrac{x-1}{2x\left(x-2\right)}\)+ \(\dfrac{1}{8\left(x-2\right)}\)

\(\Rightarrow\) 7(x-2) + 2(5-x) = 4(x-1) +x

\(\Leftrightarrow\) 7x-2x+10-2x= 4x-4+x

\(\Leftrightarrow\)7x-2x-2x-4x-x = -4-10

\(\Leftrightarrow\) -2x = -14

\(\Leftrightarrow\) x = 7

Vậy phương trình có nghiệm x=7

ok

11 tháng 2 2019

78x78x+5−x4x(x−2)5−x4x(x−2)= x−12x(x−2)x−12x(x−2)+ 18(x−2)18(x−2)

7(x-2)8x(x-2)78x+2(5−x)8x(x−2)5−x4x(x−2)= 4(x−1)28x(x−2)x−12x(x−2)+ x8x(x−2)

18(x−2)


⇒7(x-2)+2(5-x)=4(x-1)+x

7x-2x+10-2x= 4x-4+x

7x-2x-2x-4x-x = -4-10

-2x = -14

x = 7

vậy tập của phương trình là: S=7}

16 tháng 8 2021

Giúp em với ạ! Em cảm ơn

16 tháng 8 2021

\(b,\)Đặt \(\sqrt{x^2+8x}=a\left(a\ge0\right)\)

Khi đó phương trình trở thành:

\(a^2-3=2a\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-1\\a=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=-1\\\sqrt{x^2+8x}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+8x=1\\x^2+8x=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+8x-1=0\\x^2+8x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4+\sqrt{17}\\x=-4-\sqrt{17}\\x=1\\x=-9\end{matrix}\right.\)

1 tháng 12 2021

B