a, 4^20-2^26+6^20/6^20-3^20+9^20
b, (-1)^2n . (-1)^n.(-1)^n+1
Mình đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)20 chia hết cho 2n+1
\(\RightarrowƯ\left(20\right)\in2n+1\)
Ư(20)={1;20;2;10;4;5}
thay:
2n+1=1 suy ra n= 0
2n+1=20 suy ra n thuộc rỗng
2n+1=2 suy ra n thuộc rỗng
2n+1=4 suy ra n thuộc rỗng
2n+1=5 suy ra n=2
\(\Rightarrow n\in1;5\)
2)n thuộc B(4) và n<20
B(4)<20={0;4;8;12;16}
3)n+2 là Ư(20)
Ư(20)={1;20;2;10;4;5}
thay:
n+2=1 suy ra n thuộc rỗng
n+2=20 suy ra n=18
n+2=2 suy ra n=0
n+2=10 suy ra n=8
n+2=4 suy ra n=4
n+2=5 suy ra n=3
\(\Rightarrow n\in\left\{20;2;10;4;5\right\}\)
4) tương tự
5 ) ko hiểu
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+2-2n-3⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d\inƯ\left(-1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)
hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)
Tính
a) \(\dfrac{1}{2}\) . ( \(\dfrac{4}{3}\) + \(\dfrac{2}{5}\) ) - \(\dfrac{3}{4}\) . ( \(\dfrac{8}{9}\) + \(\dfrac{13}{3}\) )
= \(\dfrac{1}{2}\) . \(\dfrac{8}{15}\) - \(\dfrac{3}{4}\) . \(\dfrac{47}{9}\)
= \(\dfrac{4}{15}\) - \(\dfrac{47}{12}\)
= \(\dfrac{-73}{20}\)
b) \(\dfrac{1}{5}\) : \(\dfrac{1}{10}\) - \(\dfrac{1}{3}\) . ( \(\dfrac{6}{5}\)-\(\dfrac{9}{4}\) )
= 2 - \(\dfrac{1}{3}\) . \(\dfrac{-21}{20}\)
= 2 - \(\dfrac{-7}{20}\)
= \(\dfrac{47}{20}\)
c) \(\dfrac{-3}{4}\) . ( \(\dfrac{20}{9}\) - \(\dfrac{8}{15}\) ) - \(\dfrac{5}{3}\) . \(\dfrac{9}{10}\)
= \(\dfrac{-3}{4}\) . \(\dfrac{76}{45}\) - \(\dfrac{3}{2}\)
= \(\dfrac{-19}{15}\) - \(\dfrac{3}{2}\)
= \(\dfrac{-7}{30}\)
1/
10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}
2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}
=> n \(\in\){2;3;4;5;7;13}
3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}
=> 2n \(\in\){0;1;3;4;9;19}
=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)
4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}
Mà n < 20 => n \(\in\){0;4;8;12;16}
5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}
=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )
6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}
=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)
=> n = 1
7. n(n + 1) = 6 = 2.3 => n = 2