K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

bn ko viết dấu ra à?

hễ trả lời thì nhắn tin cho mik nha!

16 tháng 9 2018

Thế bạn ko biết dịch ra à . Cứ tưởng ai trả lời . Ai ngờ lại đi hỏi mấy câu ngớ ngẩn !

a: Xét tứ giác BDCE có

BD//CE
BE//CD
DO đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nen Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của ED

31 tháng 10 2018

Nghiệm t/m là (x;y)=(0;0)

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

8 tháng 10 2018

Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)

\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\

=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)

=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)

ÁP dụng BĐT cô si

\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)

\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)

\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)

=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)

=> MinQ=64 khi x=y=z=a/3