Cho các góc A,B,C,D của tứ giác ABCD lần lượt tỉ lệ với 3,4,5,6. Chứng minh tứ giác ABCD là hình thang??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)
hay ABCD là hình thang
Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau
CM: tứ giác ABCD là hình thang
HOK TOT
Giả sử tia phân giác của góc A và D cắt nhau tại E
ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)
Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD
b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.
ta có
\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)
Vậy BF vuông góc với FC
Đáp án cần chọn là: C
Vì A ^ ÷ B ^ ÷ C ^ ÷ D ^ = 4 ÷ 3 ÷ 2 ÷ 1 nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 4 + 3 + 2 + 1 = A + B + C + D 10
( tính chất tỉ lệ thức )
Mà A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 10 = 360 0 10 = 36 0
⇒ A ^ = 4 × 36 ° = 144 ° ; B ^ = 3 × 36 ° = 108 ° ; C ^ = 2 × 36 ° = 72 ° ; D ^ = 1 × 36 ° = 36 °
\(\frac{A}{3}=\frac{B}{4}=\frac{C}{5}=\frac{D}{6}=\frac{A+B+C+D}{3+4+5+6}=\frac{360}{18}=20\)
=>A=60độ,B=80 độ,C=100 độ,D=120 dộ
Ta thấy A+D=180 độ
Mà 2 góc này nằm ở vị trí trong cùng phía
=>AB//CD
=>đpcm