Giải phương trình:\(\frac{x^2-5x+4}{x^2-2}=5\left(x-1\right)\)
Mk cần gấp trong ngày mai nhé! giúp mình với!^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)
\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)
\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)
P/s: ko chắc
ĐKXĐ : X2 \(\ne\)2
Ta có: \(\frac{x^4-5x+4}{x^2-2}\)= \(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)
\(+x-1=0\Rightarrow x=1\)
+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)
\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)
hoặc x=-1
Bạn tự kết luận nhé..
1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm
Ta có
4x-8=9x-3-2x+1
<=>-6=-3x(chuyển vế đổi dấu)
<=>x=2
b)
Ta có
Căn cả 2 vế ta đcx-5/ cawn3 =3
<=>x=10.2
\(a,\frac{x^2+2.x.5+5^2+x^2-2.x.5+5^2}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy giá trị biểu thức không phụ thuộc vào x
\(b,\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy gt biểu thức không phụ thuộc vào x
a) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\)đpcm
b) \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
\(\Rightarrow\)đpcm
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,) (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)
\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)
\(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = { -2 }
tk cho mk nka ! ! ! th@nks ! ! !
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
\(\frac{x^2-5x+4}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{x^2-x-4x+4}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{x\left(x-1\right)-4\left(x-1\right)}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{\left(x-1\right)\left(x-4\right)}{x^2-2}=5\left(x-1\right)\)
Với x = 1
=> x - 1 = 0
=> \(\frac{0.\left(x-4\right)}{x^2-2}=5.0\)
=> 0 = 0 ( luôn đúng )
Với x khác 1
=> x - 1 khác 0
=> \(\frac{x-4}{x^2-2}=5\)( chia cả hai vế cho x - 1 )
=> \(x-4=5x^2-10\)
=> \(5x^2-x-6=0\)
=> \(5x^2+5x-6x-6=0\)
=> \(5x\left(x+1\right)-6\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(5x-6\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}}\)
Vậy \(x\in\left\{1;-1;\frac{6}{5}\right\}\)